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Chapter VII. Nondiagonalizable Operators.

VII.1. Basic Definitions and Examples.

Nilpotent operators present the first serious obstruction to attempts to diagonalize a
given linear operator.

1.1. Definition. A linear operator T : V → V is nilpotent if T k = 0 for some k ∈ N;
it is unipotent if T = I + N with N nilpotent.

Obviously T is unipotent ⇔ T − I is nilpotent.
Nilpotent operators cannot be diagonalized unless T is the zero operator (or T = I,

if unipotent). Any analysis of normal forms must examine these operators in detail.
Nilpotent and unipotent matrices A ∈ M(n, F) are defined the same way. As examples,
all strictly upper triangular matrices (with zeros on the diagonal) as well as those that
are strictly lower triangular, are nilpotent in view of the following observations.

1.2. Exercise. If A has upper triangular form with zeros on and below the diagonal,
prove that

A2 =









0 0 ∗
· ·
· 0

0 0









A3 =













0 0 0 ∗
· · ·
· · 0
· 0

0 0













,

etc, so that An = 0. �

Matrices of the same form, but with 1’s on the diagonal all correspond to unipotent
operators.

We will see that if N : V → V is nilpotent there is a basis X such that

[N ]X =









0 ∗
·
·

0 0









,

but this is not true for all bases. Furthermore, a lot more can be said about the terms
(∗) for suitably chosen bases.

1.3. Exercise. In M(n, F), show that the sets of upper triangular matrices:

(a) The strictly upper triangular group N =























1 ∗
·
·

0 1























with entries

in F.

(b) The full upper triangular group in M(n, F), P =























a1,1 ∗
·
·

0 an,n























with entries in F such that
∏n

i=1 ai,i 6= 0.
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are both subgroups in GL(n, F), with det(A) =
∏n

i=1 ai,i 6= 0 for elements of either group.
Verify that N and P are closed under taking products and inverses. �

1.4. Exercise. Let A =

(

0 1
0 0

)

in M(2, F). This is a nilpotent matrix and in any

ground field the only root of its characteristic polynomial

pA(λ) = det(A− λI) = λ2

is λ = 0. There is a nontrivial eigenvector e1 = (1, 0), corresponding to eigenvalue λ = 0,
because ker(A) = F · e1 is nontrivial (as it must be for any nilpotent operator). But you
can easily verify that scalar multiples of e1 are the only eigenvectors, so there is no basis
of eigenvectors. A cannot be diagonalized by any similarity transformation, Regardless
of the ground field F. �

“Stable Range” and “Stable Kernel” of a Linear Map. If T : V → V is a linear
operator on a finite dimensional vector space (arbitrary ground field), let Ki = K(T i) =
ker(T i) and Ri = R(T i) = range(T i) for i = 0, 1, 2, · · · . Obviously these spaces are
nested

(0) ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Ki ⊆ Ki+1 ⊆ · · ·
V ⊇ R1 ⊇ R2 ⊇ · · · ⊇ Ri ⊇ Ri+1 ⊇ · · · ,

and if dim(V ) < ∞ they must each stabilize at some point, say with Kr = Kr+1 = · · ·
and Rs = Rs+1 = · · · for some integers r and s. In fact if r is the first (smallest)
index such that Kr = Kr+1 = · · · the sequence of ranges must also stabilize at the same
point because |V | = |Ki| + |Ri| at each step. With this in mind, we define (for finite
dimensional V )

R∞ =

∞
⋂

i=1

Ri = Rr = Rr+1 = · · · (Stable range of T )

K∞ =

∞
⋃

i=1

Ki = Kr = Kr+1 = · · · (Stable kernel of T )

1.5. Proposition. V = R∞ ⊕K∞ and the spaces R∞, K∞ are T -invariant. Further-
more Ri+1 6= Ri and Ki+1 6= Ki for i < r.

Note: This splitting is sometimes referred to as the “Fitting decomposition” (after a
guy named Fitting).

Proof: To see there is a non-trivial jump Ri+1
⊂
6= Ri at every step until i = r if suffices to

show that Ri+1 = Ri at some step implies Ri = Rj for all j ≥ i (a similar result for kernels
then follows automatically). It suffices to show that Ri = Ri+1 ⇒ Ri+1 = Ri+2. Obvi-
ously, Ri+2 ⊆ Ri+1 for all i; to prove the reverse inclusion Ri+1 ⊆ Ri+2 , let v ∈ Ri+1.
Then there is some w1 ∈ V such that v = T i+1(w1) = T (T i(w1)). By hypothesis
Ri+1 = T i+1(V ) = Ri = T i(V ) so there is some w2 ∈ V such that T i(w1) = T i+1(w2).
Thus

v = T i+1(w2) = T (T i(w1)) = T (T i+1(w2)) = T i+2(w2) ∈ Ri+2

So, Ri+1 ⊆ Ri+2, Ri = Ri+1 = Ri+2, and by induction Ri = Ri+1 = · · · = R∞.
For T -invariance of R∞ = Rr and K∞ = Kr, T maps Ri → Ri+1 ⊆ Ri for all i;

taking i = r, we get T (R∞) = R∞. As for the kernels, if v ∈ Ki+1 then 0 = T i+1(v) =
T i(T (v)). As a consequence, T (v) ∈ Ki and T (Ki+1) ⊆ Ki for all i. For i ≥ r, we have
Ki = Ki+1 = K∞, so T (K∞) = K∞ as claimed.

To see V = K∞ ⊕ R∞ we show (i) R∞ + K∞ = V and (ii) R∞ ∩K∞ = {0}. For
(ii), if v ∈ R∞ = Rr there is some w ∈ V such that T r(w) = v ; but if v ∈ K∞ = Kr,
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then T r(v) = 0 and hence T r(v) = 0. Consequently T 2r(w) = T r(v) = 0. We now
observe that T : Ri → Ri+1 is a bijection for i ≥ r so ker(T |Rr

) = ker(T |R∞
) = {0}.

In fact, if i ≥ r then Ri = Ri+1 and T : Ri → Ri+1 is a surjective linear map, and if
T : Ri → Ri+1 = Ri is surjective it is automatically a bijection. Now in the preceding
discussion v = T r(w) ∈ Rr and T r : Rr → R2r = Rr is a bijection, so

0 = T 2r(w) = T r(T r(w)) = T r(v)

Then v = 0, hence R∞ ∩K∞ = {0}
For (ii)⇒ (i), we know

|R∞ + K∞| = |Rr + Kr| = |Rr|+ |Kr| − |Kr ∩Rr|
= |K∞|+ |R∞| = |Kr|+ |Rr| = |V |

(by the Dimension Theorem). We conclude that R∞ + K∞ = V , proving (i). �

1.6. Lemma. T |K∞
is a nilpotent operator on K∞ and T |R∞

is a bijective linear map
of R∞ → R∞. Hence, every linear operator T on a finite dimensional space V , over any
field, has a direct sum decomposition.

T = (T |R∞)⊕ (T |K∞)

such that T |K∞
is nilpotent and T |R∞

bijective on R∞.

Proof: T r(K∞) = T r(ker(T r)) = {0} so (T |K∞
)r = 0 and T |K∞

is nilpotent of degree
≤ r, the index at which the ranges stabilize at R∞.

2. Some Observations about Nilpotent Operators.

2.1. Lemma. If N : V → V is nilpotent, the unipotent operator I + N is invertible.

Proof: If Nk = 0 the geometric series I + N + N2 + . . . + Nk−1 + . . . =
∑∞

k=0 Nk is
finite and a simple calculation shows that

(I −N)(I + N + · · ·+ Nk−1) = I −Nk = I .

Hence

(1) (I −N)−1 = I + N + · · ·+ Nk−1
�

if Nk = 0. �

2.2. Lemma. If T : V → V is nilpotent then pT (λ) = det(T − λI) is equal to (−1)nλn

(n = dim(V )), and λ = 0 is the only eigenvalue (over any field F). [ It is an eigenvalue
since ker(T ) 6= {0} and the full subspace of λ = 0 eigenvectors is precisely Eλ=0(T ) =
ker(T ) ].

Proof: Take a basis X = {e1, · · · , en} that runs first through K(T ) = K1 = ker(T ), then
augments to a basis in K2 = ker(T 2), etc. With respect to this basis [T ]XX is an upper
triangular matrix with zero matrices blocks on the diagonal (see Exercise 2.4 below).
Obviously, T − λI has diagonal values −λ, so det(T − λI) = (−1)nλn as claimed. �

Similarly a unipotent operator T has λ = 1 as its only eigenvalue (over any field) and its
characteristic polynomial is pT (x) = 1- (constant polynomial ≡ 1). The sole eigenspace
Eλ=1(T ) is the set of fixed points Fix(T ) = {v : T (v) = v}.
2.3. Exercise. Prove that

(a) A nilpotent operator T is diagonalizable (for some basis) if and only if T = 0.

(b) T is unipotent if and only if T is the identity operator I = idV �
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2.4. Exercise. If T : V → V is a nilpotent linear operator on a finite dimensional
space let X = {e1, . . . , en} is a basis that passes through successive kernels Ki = ker(T i),
1 ≤ i ≤ d = deg(T ). Prove that [T ]X is upper triangular with mi ×mi zero-blocks on
the diagonal, mi = dim(Ki/Ki−1).
Hints: The problem is to devise efficient notation to handle this question. Partition the
indices 1, 2, . . . , n into consecutive intervals J1, . . . , Jd (d = deg(T )) such that {ej : j ∈
J1} is a basis for K1, {ei : i ∈ J1 ∪ J2} is a basis for K2, etc. Matrix coefficients Tij are
determined by the system of vector equations

T (ei) =

n
∑

j=1

Tjiej (1 ≤ i ≤ n = dim(V ))

What do the inclusions T (Ki) ⊆ Ki−1 tell you about the coefficients Tij? �

Let T : V → V be nilpotent. The powers T k eventually “kill” every vector v 6= 0, so
there is an m ∈ N such that {v, T (v), · · · , T m−1(v)} are nonzero and T m(v) = 0 . The
nilpotence degree deg(T ) is the smallest exponent d = 0, 1, 2, · · · such that T d = 0.

2.5. Proposition. Let T : V → V be nilpotent and v0 6= 0. If v0, T (v0), · · · , T m−1(v0)
are all nonzero and T m(v0) = 0 define W (v0) = F−span{v0, T (v0), · · · , T m−1(v0)}. This
subspace is T -invariant and the vectors {v0, T (v0), · · · , T m−1(v0)} are independent, hence
a basis for this “cyclic subspace” determined by v0 and the action of T .

Proof: The {T k(v0) : 0 ≤ k ≤ n − 1} span W (v0) by definition. They are independent
because if 0 = c0 + c1T (v0) + · · ·+ cm−1T

m−1(v0) for some choice of ck ∈ F, then

0 = T m−1(0) = T m−1(c0v0 + c1T (v0) + · · ·+ cm−1T
m−1(v0))

= c0T
m−1(v0) + c1 · 0 + · · ·+ cm−1 · 0 ,

which implies c0 = 0 since T m−1(v0) 6= 0 by minimality of the exponent m. Next, apply
T m−2 to the original sum, which has now the form c1T (v0) + · · · + cm−1T

m−1(v0); we
get

T m−2(0) = T m−2(c1T (v0) + · · ·+ cm−1T
m−1(v0)) = c1T

m−1(v0) + 0 + · · ·+ 0

and then c1 = 0. We can apply the same process repeatedly to get c0 = c1 = c2 = · · · =
cm−1 = 0. �

Obviously W (v0) is T -invariant and T0 = T |W (v0) is nilpotent (with degree m =

deg(T0) ≤ deg(T )) because for each basis vector T k(v0) we have T m
0 (T k(v0)) = T k(T m(v0)) =

0; but in fact deg(T0) = m because T m−1
0 (v0) 6= {0}. Now consider the ordered basis

X = {e1 = T m−1(v0), e2 = T m−2(v0), · · · , em = v0} in W (v0) .

Since T (ek+1) = ek for each k ≥ 1 and T (e1) = 0, the matrix [T ]X,X has the form

[T ]X =

















0 1 0 · · 0
0 0 1 ·
0 0 0 · ·
· · · ·
· · · 1
0 · · · 0 0

















The action on these ordered basis vectors is :

0
T←− e1

T←− e2
T←− · · · T←− em−1

T←− em = v0
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The “top vector” em = v0 is referred to as a cyclic vector for the invariant subspace
W (v0). Any matrix having the form

















0 1 0 · · 0
0 0 1 ·
0 0 0 · ·
· · · ·
· · · 1
0 · · · 0 0

















is called an elementary nilpotent matrix.

Cyclic Vectors and Cyclic Subspaces for General Linear Operators. To put
this in its proper context we leave the world of nilpotent operators for a moment.

2.6. Definition. If dim(V ) < ∞, T : V → V is a linear operator, and W ⊆ V a
nonzero T -invariant subspace, we say W is a cyclic subspace if it contains a “cyclic
vector” v0 ∈ W such that W = F-span{v0, T (v0), T

2(v0), · · · }.
Only finitely many iterates T i(v0) under the action of T can be linearly independent, so
there will be a first (smallest) exponent k = k(v0) such that {v0, T (v0), · · · , T k−1(v0)}
are linearly independent and T k(v0) is a linear combination of the previous vectors.

2.7. Proposition. Let T : V → V be an arbitrary linear operator on a finite dimensional
vector space. If v0 ∈ V is non-zero there is a unique exponent k = k(v0) ≥ 1 such that
{v0, T (v0), · · · , T k−1(v0)} are linearly independent and T k(v0) is a linear combination of
these vectors. Obviously,

W = F−span{T j(v0) : j = 0, 1, 2, · · · } = F−span{v0, T (v0), · · · , T k−1(v0)}

and dim(W ) = k. Furthermore, T (W ) ⊆W and W is a cyclic subspace in V .

Proof: By definition of k = k(v0), T k(v0) is a linear combination T k(v0) =
∑k−1

j=0 cjT
j(v0).

Arguing recursively,

T k+1(v0) = T (T k(v0)) =

k−1
∑

j=0

cjT
j+1(v0)

= (ck−1T
k(v0)) + (linear combinations of v0, T (v0), · · · , T k−1(v0) )

Since we already know T k(v0) lies in F-span{v0, T (v0), · · · , T k−1(v0)}, so does T k+1(v0).
Continuing this process, we find that all iterates T i(v0) (i ≥ k) lie in W . By definition
v0, T (v0), · · · , T k−1(v0) are linearly independent and span W , so dim(W ) = k. �

When T is nilpotent there is a simpler alternative description of the cyclic subspace W
generated by the action of T on v0 6= 0. Since T d = 0 on all of V when d = deg(T ), there
is a smallest exponent l such that {v0, T (v0), · · · , T ℓ−1(v0)} are nonzero and T ℓ(v0) =
T ℓ+i(v0) = 0 for all i ≥ 0. These vectors are independent and the next vector T ℓ(v0) = 0
lies in F-span{v0, T (v0), · · · , T ℓ−1(v0)}, so ℓ is precisely the exponent of the previous
lemma and C = F-span{v0, T (v0), · · · , T ℓ−1(v0)} is the cyclic subspace generated by v0.

3. Structure of Nilpotent Operators.
Resuming the discussion of nilpotent operators, we first observe that if T : V → V is

nilpotent and nonzero the chain of kernels Ki = ker(T i),

{0} = K0
⊂
6= K1 = ker(T )

⊂
6= K2

⊂
6= · · · ⊂6= Kd = V (d = deg(T ))
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terminates at V in finitely many steps. The difference sets partition V ∼ (0) into disjoint
“layers”

V ∼ (0) = (Kd ∼ Kd−1) ∪ · · · ∪ (Ki ∼ Ki−1) ∪ · · · ∪ (K1 ∼ K0)

where K0 = (0). The layers Ki ∼ Ki−1 correspond to the quotient spaces Ki/Ki−1,
and by examining the action of T on these quotients we will be able to determine the
structure of the operator T .

3.1. Exercise. If v0 is in the “top layer” V ∼ Kd−1, prove that F-span{T j(v0) : j ≥ 0}
has dimension d and every such v0 is a cyclic vector under the iterated action of T on
W . �

Since dim(Kd−1) < dim(Kd) = dim(V ), Kd−1 is a very thin subset of V and has “measure
zero” in V when F = R or C. If you could pick a vector v0 ∈ V “at random,” you would
have v0 ∈ V ∼ Kd−1 “with probability 1,” and every such choice of v0 would generate
a cyclic subspace of dimension d. “Unsuccessful” choices, which occur with “probability
zero,” yield cyclic subspaces W (v0) of dimension < d.

We now state the main structure theorem for nilpotent operators .

3.2. Theorem (Cyclic Subspace Decomposition). Given a nilpotent linear operator
T : V → V on a finite dimensional vector space V , there is a decomposition V =
V1 ⊕ · · · ⊕ Vr into cyclic T -invariant subspaces. Obviously the restrictions Ti = T |Vi

are
nilpotent, with degrees

mi = dim(Vi) = (smallest exponent m such that T m kills the cyclic generator vi ∈ Vi)

These degrees are unique when listed in descending order m1 ≥ m2 ≥ · · · ≥ mr > 0
(repeats allowed), and

∑r
i=1 mi = dim(V ).

While it is nice to know such structure exists, it is equally important to develop a con-
structive procedure for finding suitable cyclic subspaces V1, · · · , Vr . This is complicated
by the fact that the cyclic subspaces are not necessarily unique, unlike the eigenspaces
Eλ(T ) associated with a diagonalizable operator. Any algorithm for constructing suitable
Vi will necessarily involve some arbitrary choices.

The rest of this section provides a proof of Theorem 3.2 that yields on an explicit
construction of the desired subspaces. There are some very elegant proofs of Theorem
3.2, but they are existential rather than constructive and so are less informative.

3.3. Corollary. If T : V → V is nilpotent, there is a decomposition into cyclic spaces
V = V1 ⊕ . . . ⊕ Vr, so there is a basis X such that [T ]X consists of elementary nilpotent
diagonal blocks.

[T ]X =

















B1 0 0 · 0
0 B2 0 ·
0 0 0 · ·
· · · ·
· · ·
0 · · · 0 Br

















with

Bi =

















0 1 0 0
0 0 1 ·
0 0 0 · ·
· · · ·
· · · 1
0 · · · 0 0
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We start with the special case in which T has the largest possible degree of nilpotence.

3.4. Lemma. If T is nilpotent and deg(T ) = dim(V ), there is a cyclic vector in V and
a basis such that [T ]X has the form Bi of an elementary nilpotent matrix.

Proof: If deg(T ) = d is equal to dim(V ), the spaces Ki = ker(T i) increase with

|Ki+1| ≥ 1+ |Ki| at each step in the chain {0} ⊂
6= K1 ⊆ · · · ⊆ Kd−1 ⊆ Kd = V . There are

d = dim(V ) steps so we must have |Ki+1| = 1 + |Ki|. Take any vector v0 ∈ V ∼ Kd−1.
Then T d(v0) = 0 but by definition of Kd−1, v0, T (v0), · · · , T d−1(v0) are all nonzero, so
v0 is a cyclic vector for the iterated action of T . �

If T : V → V is nilpotent of degree d, the idea behind proof of Theorem 3.1 is to look
at the kernels Ki = ker(T i).

V = Kd
⊃
6= Kd−1

⊃
6= · · · ⊃6= K2

⊃
6= K1 = ker(T )

⊃
6= {0}

As the kernels get smaller, more of V is “uncovered” (the difference set V ∼ Ks and the
quotient V/Ks get bigger) and the action in V/Ks reveals more details about the full
action of T on V .

It will be important to note that T (Ki) ⊆ Ki−1 (since 0 = T i(x) = T i−1(T (x))
and T (x) ∈ Ki−1). Furthermore, x /∈ Ki implies that 0 6= T i(x) = T i−1(T (x)) so that
T (x) /∈ Ki−1. Thus

(2) T maps Ki+1 ∼ Ki into Ki ∼ Ki−1 for all i.

But it is not generally true that T (Kj) = Kj−1.

3.5. Definition. Let T : V → V be an arbitrary linear map and W a T -invariant
subspace. We say that vectors e1, · · · , em in V are:

1. Independent (mod W ) if their images e1, · · · , em in V/W are linearly indepen-
dent. Since

∑

i ciei = 0 in V/W if and only if
∑

i ciei ∈ W in V , that means:

m
∑

i=1

ciei ∈ W ⇒ c1 = · · · = cm = 0 (ci ∈ F)

2. Span V (mod W ) if F-span{ei} = V/W , which means: given v ∈ V , there are
ci ∈ F such that (v −∑i ciei) ∈ W , or v =

∑

i=0 ciei in V/W .

3. A basis for V (mod W ) if the images {ei} are a basis in V/W , which happens if
and only if 1. and 2. hold.

3.6. Exercise. Let W ⊆ R5 be the solution set of system

{

x1 + x3 = 0
x1 − x4 = 0

and let {ei} be the standard basis in V = R5.

1. Find vectors v1, v2 that are a basis for V (mod W ).

2. Is X = {e1, e2, e3, v1, v2} a basis for V where v1, v2 are the vectors in (1.)?

3. Find a basis {f1, f2, f3} for the subspace W . �
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Figure 7.1. Steps in the construction of a basis that decomposes vector space V into cyclic
subspaces under the action of a nilpotent linear operator T : V → V . The subspaces Ki are
the kernels of the powers T i for 1 ≤ i ≤ d = deg(T ), with Kd = V and K0 = (0).

3.7. Exercise. Let T : V → V be an arbitrary linear map and W a T -invariant
subspace. Independence of vectors f1, · · · , fr mod a T -invariant subspace W ⊆ V im-
plies the independence (mod W ′) for any smaller T -invariant subspace W ′ ⊆W ⊆ V . �

Proof of Theorem 3.2. Below we will construct two related sets of vectorsF1,F2,F3, · · ·
and E1 = F1 ⊆ E2 ⊆ E3 ⊆ · · · ⊆ Er such that Er is a basis for V aligned with the kernels
Kd = V ⊇ Kd−1 ⊇ · · · ⊇ K1 = ker(T ) ⊇ {0}. When the construction terminates, the
vectors in Er will be a basis for all of V that provides the desired decomposition into
cyclic subspaces.

(Initial) Step1: Let F1 = E1 = {ei : i ∈ index set I1} be any set of vectors in
V ∼ Kd−1 that are a basis for V (mod Kd−1), so their images {ei} are a basis in
V/Kd−1. Obviously the index set I1 has cardinality |I1| = |V/Kd−1| = |V | − |Kd−1|, the
dimension of the quotient space.

You might feel more comfortable indicating the index sets I1, I2, · · · being constructed
here as consecutive blocks of integers, say I1 = {1, 2, · · · , s1}, I2 = {s1 + 1, · · · , s2} etc,
but this notation becomes really cumbersome after the first two steps. And in fact there
is no need to explicitly name the indices in each block. From here on you should refer
to the chart shown in Figure 7.1, which lists all the players that will emerge in our
discussion.

Step 2: The T -images T (F1) lie in the layer T (V ∼ Kd−1) ⊆ Kd−1 ∼ Kd−2, as noted
in (2). In this step we shall verify two assertions.

Claim (i): The vectors in T (F1) = {T (ei) : i ∈ I1} ⊆ Kd−1 ∼ Kd−2 are
independent (mod Kd−2).

If these vectors are not already representatives of a basis for Kd−1/Kd−2 we can adjoin
additional vectors F2 = {ei : i ∈ I2} ⊆ Kd−1 ∼ Kd−2 chosen so that T (F1) ∪ F2

corresponds to a basis for Kd−1/Kd−2; otherwise we take F2 = ∅.

Claim (ii): The vectors E2 = F2 ∪ [E1 ∪ T (F1)] = E1 ∪ [T (F1) ∪ F2 ] are a
basis for all of V (mod Kd−2).
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Remarks: In Linear Algebra I we saw that if W ⊆ V and {e1, · · · , er} is a basis for W ,
we can adjoin successive “outside vectors” er+1, · · · , es to get a basis for V . (These can
even be found by deleting some of the vectors in a pre-ordained basis in V .) Then the
images {er+1, · · · , es} are a basis for the quotient space V/W . That is how we proved
the dimension formula |V | = |W |+ |V/W | for finite dimensional V .] �

Proof: Claim (i). If
∑

i∈I1
aiT (ei) = T (

∑

i∈I1
aiei) ≡ 0 (mod Kd−2) then

∑

i∈I1
aiei

is in Kd−2 and also lies in the larger space Kd−1 ⊇ Kd−2. But by definition vectors in
F1 = {ei : i ∈ I1} are independent (mod Kd−1), so we must have ai = 0 for i ∈ I1,
proving independence (mod Kd−1) of the vectors in T (F1).

Proof: Claim (ii). Suppose there exist coefficients a
(1)
i , a

(2)
i , bi ∈ F such that

(3)
∑

i∈I1

a
(1)
i ei +

∑

i∈I2

a
(2)
i ei +

∑

i∈I1

biT (ei) ≡ 0 (mod Kd−2),

This sum lies in Kd−2, hence also in the larger subspace Kd−1, and the last two terms
are already in Kd−1 because F2 ∪ T (F1) ⊆ Kd−1 ∼ Kd−2. Thus

∑

i∈I1

a
(1)
i ei ≡ 0 (mod Kd−1) ,

and since the ei, i ∈ I1, are independent (mod Kd−1) we must have a
(1)
i = 0 for all

i ∈ I1. Now the sum (3) reduces to its last two terms, which all lie in Kd−1. But by

construction, F2 ∪ T (F1) is a basis for Kd−1 (mod Kd−2), which implies a
(2)
i = 0 for

i ∈ I2 and bi = 0 for i ∈ I1. Thus E2 = F1∪ [T (F1)∪F2] is an independent set of vectors
(mod Kd−2).

It remains to show E2 spans V (mod Kd−2). If v ∈ V is not contained in Kd−1 there
is some v1 ∈ F-span{F1} such that v− v1 ≡ 0 (mod Kd−1), so v− v1 ∈ Kd−1. If this dif-
ference is lies outside of Kd−2 we can find some v2 ∈ T (F1)∪F2 such that v = (v1 +v2) ∈
Kd−2. Thus v = v1 + v2 (mod Kd−2), and since v1 + v2 ∈ F-span{F1 ∪ T (F1) ∪ F2},
statement (ii) is proved. �

That completes Step 2. Further inductive steps fill in successive rows in Figure 7.1.
They involve no new ideas, but things can get out of hand unless the notation is carefully
managed. Below we include a complete discussion of the general inductive step in this
process, which could be skipped on first reading. It is followed by a final paragraph
proving uniqueness of the multiplicities mi (which you should read).

The General Inductive Step in Proving Theorem 3.2. This should probably be
read with the chart from Figure 7.1 in hand to keep track of the players.

Continuing the recursive construction of basis vectors: at step r we have defined sets
of vectors Fi ⊆ Kd−i+1 ∼ Kd−i for 1 ≤ i ≤ r with the properties E1 = F1 and

Er = Er−1 ∪ [T r−1(F1) ∪ · · · ∪ T (Fr−1) ∪ Fr]

is a basis for V/Kd−r. At the next step we take the new vectors

T r−1(F1) ∪ T r−2(F2) ∪ · · · ∪ Fr ⊆ Kd−r+1 ∼ Kd−r

created in the previous step and form their T -images

T r(F1) ∪ · · · ∪ T (Fr) ⊆ Kd−r ∼ Kd−r−1

To complete the inductive step we show:
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1. These vectors are independent (mod Kd−r−1)

2. We then adjoin additional vectors Fr+1 ⊆ Kd−r ∼ Kd−r−1 as needed to produce
a basis for Kd−r/Kd−r−1, taking Fr+1 = ∅ if the vectors T r(F1) ∪ · · · ∪ T (Fr) are
already representatives for a basis in Kd−r/Kd−r−1. The vectors

Er+1 = Er ∪ [T r(F1) ∪ . . . ∪ T (Fr) ∪ Fr+1]

will then be a basis for V (mod Kd−r−1).

Proof details:

1. If the vectors T r(F1) ∪ · · · ∪ T (Fr) are not representatives for an independent set

of vectors in Kd−r/Kd−r−1 there are coefficients {c(1)
i : i ∈ I1}, · · · , {c(r)

i : i ∈ Ir}
such that

∑

i∈I1

c
(1)
i T r(ei) + . . . +

∑

i∈Ir

c
(r)
i T (ei) ≡ 0 (mod Kd−r−1)

So, this sum is in Kd−r−1 and in Kd−r. But T r−1{ei : i ∈ I1}∪· · ·∪{ei : i ∈ Ir} are
independent vectors (mod Kd−r) by hypothesis, and are a basis for Kd−r+1/Kd−r.
We may rewrite the last congruence as

T [
∑

i∈I1

c
(1)
i T r−1(ei) + . . . +

∑

i∈Ir

c
(r)
i ei ] ≡ 0 (mod Kd−r−1)

So, T [· · · ] ∈ Kd−r−1, hence [· · · ] ∈ Kd−r too. By independence of the ei (mod

Kd−r), we must have c
(j)
i = 0 in F for all i, j. Thus the vectors T r(F1)∪· · ·∪T (Fr)

are independent (mod Kd−r−1) as claimed.

2. To verify independence of the updated set of vectors

Er+1 = Er ∪ [T r(F1) ∪ · · · ∪ T (Fr) ∪ Fr+1]

in V/Kd−r−1, suppose some linear combination S = S′ + S′′ is zero (mod Kd−r−1)
where S′ is a sum over vectors in Er and S′′ a sum over vectors in T r(F1)∪· · ·∪Fr+1.
Then S ≡ 0 (mod Kd−r−1) implies S ≡ 0 (mod Kd−r), and then by independence of
vectors in Er (mod Kd−r), all coefficients in S′ are zero. The remaining term S′′ in
the reduced sum lies in Kd−r ∼ Kd−r−1, and by independence of T r(F1)∪· · ·∪Fr+1

in Kd−r/Kd−r−1 all coefficients in S′′ are also zero. Thus Er+1 ⊆ V corresponds
to an independent set in Kd−r/Kd−r−1.

Dimension counting reveals that

|V/Kd−1| = |F1|
|Kd−1/Kd−2| = |T (F1)|+ |F2| = |F1|+ |F2|

...(4)

|Kd−r/Kd−r−1| = |F1|+ . . . + |Fr+1|

Thus |V/Kd−r−1| = |V/Kd−1| + · · · + |Kd−r/Kd−r−1| is precisely the number |Er+1| of
basis vectors appearing in the first r + 1 rows from the top of the chart in Figure 7.1).
But this is also equal to dim(V/Vd−r−1), so Er+1 is a basis for V/Vd−r−1 and Step(r+1)
of the induction is complete.

The Cyclic Subspace Decomposition. A direct sum decomposition of V into cyclic
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subspaces can now be read out of Figure 7.1, in which basis vectors have been constructed
row-by-row. Consider what happens when we partition into columns. For each ei ∈ F1,
(i ∈ I1), we have ei, T (ei), T

2(ei), · · · , T d−1(ei) 6= 0 and T d(ei) = 0, so these vectors
span a cyclic subspace E(ei) such that T |E(ei) has nilpotent degree d with ei as its cyclic
vector. Since the vectors that span E(ei) are part of a basis Ed for all of V , we obtain a
direct sum of cyclic T -invariant subspaces

⊕

i∈I1
E(ei) ⊆ V (|I1| = |F1| subspaces).

Vectors ei ∈ F2 (i ∈ I2) generate cyclic subspaces E(ei) such that dim (E(ei)) =
deg(T |E(ei)) = d− 1; these become part of

⊕

i∈I1

E(ei)⊕
⊕

i2∈I2

E(e2) ,

etc. At the last step, the vectors ei ∈ Fd (i ∈ Id) determine T -invariant one-dimensional
cyclic spaces such that T (Fei) = (0), with nilpotence degree = 1 – i.e. the spaces
E(ei) = Fei all lie within ker(T ). The end result is a cyclic subspace decomposition

(5) (
⊕

i1∈I1

E(ei1)) ⊕ (
⊕

i2∈I2

E(ei2)) ⊕ . . . ⊕ (
⊕

id∈Id

E(eid
))

of the entire space V , since all basis vectors in Er are accounted for. (Various summands
in (5) may of course be trivial.)

Uniqueness: A direct sum decomposition V =
⊕s

j=1 Ej into T -invariant cyclic sub-
spaces can be refined by gathering together those Ei of the same dimension, writing

V =

d
⊕

k=1

Hk where Hk =
⊕

{Ei : dim(Ei) = deg(T |Ei) = k}

for 1 ≤ k ≤ d = deg(T ).

3.8. Proposition. In any direct sum decomposition V =
⊕s

j=1 Ej into cyclic T -
invariant subspaces, the number of spaces of dimension dim(Ei) = k, 1 ≤ k ≤ d = deg(T )
can be computed in terms of the dimensions of the quotients Ki/Ki−1. These numbers
are the same for all cyclic decompositions.

Proof: Let us regard Figure 7.1 as a d × d array of “cells” with Cij the cell in Row(i)
(from the top) and Col(j) (from the left) in the array; the “size” |Cij | of a cell is the
number of basis vectors it contains. Note that

(i) |Cij | = 0 if the cell lies above the diagonal, with j > i, because those cells are
empty (others may be empty too).

(ii) |Cij | = |Fj | for all cells on and below the diagonal in Col(j) of the array. In
particular |Cj1| = |F1| for all nonempty cells in Col(1), |Cj2| = |F2| for those in
Col(2), etc.

By our construction, it is evident that vectors in the nonempty cells in Row(r) of Figure
7.1 correspond to a basis for the quotient space Kd−r/Kd−r−1. Counting the total
number of basis vectors in Row(r) we find that

dim(Kd−r/Kd−r−1) = |Cr1|+ . . . + |Cr+1,r+1| = |F1|+ . . . + |Fr+1| ,

We may now recursively compute the values of |Crj | and |Fj | from the dimensions of the
quotent spaces Ki/Ki−1. But as noted above, each ei ∈ Fk lies in the diagonal cell Ckk

and generates a distinct cyclic space in the decomposition. �

That completes the proof of Theorem 3.2.

Remarks. To summarize,
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1. We define Ki = ker(T i) for 1 ≤ d = i nilpotence degree of T .

2. The following relations hold.

E1 = F1 ⊆ V ∼ Kd−1 determines a basis for V/Kd−1,

E2 = E1 ∪ [T (F1) ∪ F2 ] ⊆ V ∼ Kd−2 determines a basis for V/Kd−2,

...

Er+1 = Er ∪ [T r(F1) ∪ T r−1(F2) ∪ · · · ∪ Fr+1 ] ⊆ V ∼ Kd−r determines a basis for V/Kd−r−1

...

Ed = Ed−1 ∪ [T d−1(F1) ∪ · · · ∪ T (Fd−1) ∪ Fd ] is a basis for all of V. �

In working examples it usually helps to start by determining a basis B(0) = B(1)∪. . .∪B(d)

for V aligned with the kernels so that B(1) is a basis for K1, B(2) determines a basis for
K2/K1, etc. This yields a convenient basis in V to start the construction.

3.9. Example. Let V = F5 and T : V → V the operator T = LA,

T (x1, · · · , x5) = (0, x3 + x4, 0, x3, x1 + x4)

whose matrix with respect to the standard basis X = {e1, · · · , e5} in F5 is

A = [T ]X =













0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 1 0 0
1 0 0 1 0













Show that T is nilpotent, then determine deg(T ) and the kernels

V = Kd ⊇ Kd−1 ⊇ · · · ⊇ K1 ⊇ {0}

Find a basis Y such that [T ]Y has block diagonal form, with each block Bi an elementary
nilpotent matrix. This is the Jordan canonical form for a nilpotent linear operator.

Discussion: First find bases for the kernels Ki = ker(T i). We have

K1 = ker(T ) = {x : x3 + x4 = 0, x3 = 0, x1 + x4 = 0}
= {x : x4 = x3 = 0, x1 + x4 = 0} = {x : x1 = x3 = x4 = 0}
= {(0, x2, 0, 0, x5) : x2, x5 ∈ F} = F-span{e2, e5}

Iteration of T yields

T (x) = (0, x3 + x4, 0, x3, x1 + x4)

T 2(x) = T (T (x)) = (0, x3, 0, 0, x3)

T 3(x) = (0, · · · , 0)

for x ∈ F5. Clearly T is nilpotent with deg(T ) = 3, and

|K1| = 2 : K1 = F-span{e2, e5} = {x : x1 = x3 = x4 = 0}
|K2| = 4 : K2 = ker(T 2) = {x : x3 = 0} = F-span{e1, e2, e4, e5}
|K3| = 5 : K3 = F5

In this example, X = {e2, e5; e1, e4; e2} = B(1) ∪ B(2) ∪ B(3) is an ordered basis for V
aligned with the Ki running through (0) ⊆ K1 ⊆ K2 ⊆ K3 = V . From this we can
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determine the families F1,F2,F3 of Theorem 3.2.

Step 1: Since |K3/K2| = 1 any nonzero vector in the layer K3 ∼ K2 = {x : x3 6= 0}
yields a basis vector for K3/K2. We shall take F1 = {e3} chosen from the standard basis
X, and then E1 = {e3} too. (Any x with x3 6= 0 would also work.)

Step 2: The image set T (F1) = T (e3) = e2 + e4 lies in the next layer

K2 ∼ K1 = {x : x3 = 0} ∼ F-span{e2, e5}
= {x : x3 = 0 and x1, x4 are not both = 0}

Since |T (F1)| = 1 and dim(K2/K1) = |K2| − |K1| = 4 − 2 = 2, we must adjoin one
suitably chosen new vector x from layer K2 ∼ K1 to T (F1) to get the desired basis for
K2/K1. Then F2 = {x} and

E2 = (F1 ∪ T (F1)) ∪ F2 = {e3, e2 + e4,x}

E2 is a basis for V/K2 as in first inductive step of Theorem 3.2.
A suitable vector x = (x1, . . . , x5) in K2 ∼ K1, x = (x1, x2, x3, x4, x5) must have

x3 = 0 (so x ∈ K2) and x1, x3, x4 not all zero (so x /∈ K1). This holds if and only if
(x3 = 0) and (x1, x4 are not both 0). But we must also insure that our choice of x makes
{e3, e2 + e4,x} independent (mod K1). The following lemma is helpful.

3.10. Lemma. Let V = Fn, W a subspace, X = {v1, · · · , vr} vectors in V , and let
M = F-span{v1, · · · , vr} (so r = |V/W | ). Let Y = {w1, · · · , wn−r} be a basis for W .
Then the following assertion are equivalent.

1. X determines a basis for V/W .

2. Y ∪ X = {v1, · · · , vr, w1, · · · , wn−r} is a basis for V .

3. V = W ⊕M (direct sum of subspaces).

Proof: In Linear Algebra I we showed that the images v1, · · · , vr are a basis for V/W
if and only if {v1, · · · .vr} ∪Y are a basis for V . It is obvious that (ii)⇔ (iii). �

3.11. Corollary. In the setting of the lemma the “outside vectors” v1, · · · , vr ∈ V ∼W
are a basis for V ((mod W ), so the images {v1, · · · , vr} are a basis for V/W , if and only
if the n× n matrix A whose rows are R1 = v1, · · · , Rr = vr, Rr+1 = w1, · · · , Rn = wn−r

has rank equal to n.

Armed of this observation (and the known basis {e2, e5} for K1), we seek a vector x =
(x1, . . . , x5) with x1, x4 not all equal to 0, such that

A =













e3

e2 + e4

(x1, x2, 0, x4, x5)
e2

e5













=













0 0 1 0 0
0 1 0 1 0
x1 x2 0 x4 x5

0 1 0 0 0
0 0 0 0 1













has Rowrank(A) = 5. Symbolic row operations put this into the form













x1 x2 0 x4 x5

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













,

which has rank = 5 if and only if x1 6= 0.
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Thus we may take e1 as the additional vector we seek, and then

F1 = {e3} T (F1) = {e2 + e4} F3 = {e1} ,

and E2 = [F1∪T (F1)]∪F2. That completes Step 2. (Actually any x with x1 6= 0, x3 = 0
would work.)

Step 3: In the next layer K1 ∼ K0 we have the vectors

T 2(F1) = {T 2(e3) = T (e2 + e4) = e2 + e5} and T (F2) = {T (e1)} = {e5}

Since, |K1/K0| = |K1| = 2 there is no need to adjoin additional vectors from this layer,
so F3 = ∅. The desired basis in V is

E3 = F1 ∪ [T (F1) ∪ F2 ] ∪ [T 2(F1) ∪ T (F2) ] = {e3; e2 + e4, e1; e2 + e5, e5}

The iterated action of T sends

e3 → T (e3) = e2 + e4 → T 2(e3) = e2 + e5 and e1 → T (e1) = e5

The cyclic subspaces are

E1 = F -span{e3, T (e3), T
2(e3)} = {e3, e2 + e4, e2 + e5}

E2 = F-span{e1, T (e1) = e5}

and V = E1 ⊕ E2. With respect to this basis [T ]X has the block diagonal form

[TX] =















0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 0 1
0 0 0 0 0















,

each diagonal block being an elementary nilpotent matrix. The number and size of such
blocks are uniquely determined but the bases are not unique, nor are the cyclic subspaces
in the splitting V = E1 ⊕ E2. �

3.12. Exercise. Let W be the 3-dimensional subspace in V = F5 determined by the
equations

{

x1 − 2x2 + x3 = 0
3x1 + 5x3 = 0

which is equivalent to the matrix equation Ax = 0 with

A =

(

1 −2 1 0
3 0 5 −1

)

(a) Find vectors {v1, v2, v3} that are a basis for W .

(b) Find 2 vectors {v4, v5} that form a basis for V (mod W ).

(c) Find two of the standard basis vectors {e1, e2, e3, e4, e5} in F5 that are a basis for
V (mod W ).

3.13. Exercise. Do either of the vectors in

f1 = 2e1 − 3e2 + e3 + e4 f2 = −e1 + 2e2 + 5e3 − 2e4
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in F5 lie in the subspace W determined by the system of the previous exercises? Do these
vectors form a basis for F5 (mod W )? �

3.14. Exercise. Which of the following matrices A are nilpotent?

(a)





0 0 0
1 0 0
0 1 0



 (b)





0 1 2
0 0 3
0 0 0



 (c)





1 2 −1
−1 −2 1
−1 −2 1



 (d)





5 −6 −6
−1 4 2
3 −6 4





If A is nilpotent, find a basis for F3 that puts A into block diagonal form with elementary
nilpotent blocks. What is the resulting block diagonal form if the blocks are listed in
order of decreasing size? �

3.15. Exercise. If N1, N2 are nilpotent is N1N2 nilpotent? What if N1 and N2

commute? �

3.16. Corollary. If N1, N2 are nilpotent operators Nk : V → V and their commutator
[N1, N2] = N1N2 −N2N1 is = 0.

(a) Prove that linear combination c1N1 + c2N2 are also nilpotent.

(b) If N1, · · · , Nr are nilpotent and commute pairwise, so [Ni, Nj ] = 0 for i 6= j, prove
that all operators in F-span{N1, · · · , Nr} are nilpotent. �

3.17. Exercise. Let V = Pn(F) be the space of polynomials f =
∑n

i=0 cix
i ∈ F[x] of

degree ≤ n.

(a) Show that the differentiation operator

D : V → V, Df = df/dx = c1 + 2c2 x + · · ·+ n · cnxn−1

is nilpotent with deg(D) = n + 1 (Note: dim(V ) = n + 1).

(b) Prove that any constant coefficient differential operator L : V → V of the form
a1D + a2D

2 + · · ·+ anDn (no constant term a0I) is nilpotent on V .

(c) Does this remain true if a nonzero constant term c01- is allowed? �

3.18. Exercise. In the space of polynomials Pn(R) consider the subspaces

V1 = {f : f(x) = f(−x), the even polynomials}
V2 = {f : f(−x) = −f(x), the odd polynomials }

Prove that these subspaces are invariant under differentiation, and that Pn is their direct
sum V1 ⊕ V2. �

3.19. Exercise. Show Tr(A) = 0, for any nilpotent linear operator A : V → V of a
finite dimensional space. Is the converse true? �

VII.4 A Review of the Diagonalization Problem.

We will give a general structure theorem for linear operators T over a field F large
enough that the characteristic polynomials pT = det(T − xI) splits into linear factors
f(x) = c ·∏s

i=1(x − ai)
mi in F[x]. This is always true if F = C, but pT need not split

over other fields; and even if pT (x) does split, that alone is not enough to guarantee T is
diagonalizable. In this section we briefly review diagonalizability of linear operators over
a general field F, which means that there is a basis of eigenvectors in V (or equivalently
that the eigenspaces Eλ(T ) span V so V =

∑

λ Eλ(T )). If you already have a good
understanding of these matters you may want to skip to Section VII.5 where we discuss
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the generalized eigenspaces that lead to the Jordan Decomposition. However, you should
at least read the next theorem and its proof since the techniques used are the basis for
the more complicated proof that generalized eigenspaces are independent, part of a direct
sum decomposition of V .

Diagonalization.

4.1. Definition. Let T : V → V be a linear operator on vector space over F. If
λ ∈ F, the λ-eigenspace is Eλ = {v ∈ V : (T − λI)v = 0}. Then λ is an eigenvalue
if Eλ(T ) 6= {0} and dimF (Eλ(T )) is its geometric multiplicity. We often refer to
spF(T ) = {λ ∈ F : Eλ 6= {0}} as the spectrum of T over F.

4.2. Exercise. Show that every eigenspace Eλ is a vector subspace in V that is T -
invariant. If X = {e1, · · · , er, · · · , en} is a basis for V that first passes through Eλ, show
that the matrix of T takes the form

[T ]X =















λ 0 0 ∗ ∗
· · · ∗ ∗
0 0 λ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗















The geometric multiplicity of λ is dim(Eλ(T )). We have already seen that when F = R

the operator T = (90◦ rotation acting on R2) has no eigenvalues in R, so spR(T ) = ∅.
An operator T is diagonalizable if there is a basis X = {e1, · · · , en} consisting of

eigenvectors ei, so T (ei) = λiei with respect to this basis. Then [T ]X has the diagonal
form

[T ]X =









λ1 0
·
·

0 λn









in which there may be repeats among the λi. Conversely, any basis such that [T ]X takes
this form consist entirely of eigenvectors for T . A more sophisticated choice of basis
vectors puts [T ]X into block diagonal form. First a simple observation:

4.3. Exercise. If T : V → V is a linear operator on a finite dimensional space, show
that the following statements are equivalent.

(a) There is a basis in V consisting of eigenvectors.

(b) The eigenspaces for T span V , so that

V =
∑

λ∈sp(T )

Eλ(T ) .

Note: There actually is something to be proved here: (b) requires more care selecting
basis vectors than (a). �

So, if T is diagonalizable and {λ1, . . . , λr} are its distinct eigenvalues in F, may choose a
basis of eigenvectors ei that first runs through Eλ1

, then through Eλ2
, etc. It is obvious

that this choice yields a “block disagonal” matrix

[T ]X =















λ1 Im1×m1
0

0 λ2 I
2×m2

. . .

0 λr Imr×mr
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in which mi = dim (Eλi
(T )). �

These observations do not quite yield the definitive characterization of diagonalizability.

(6)

Diagonalizability Criterion. A linear operator T on a finite dimen-
sional space is diagonalizable over F⇔ V is the direct sum of its distinct
eigenspaces: V =

⊕r
i=1 Eλi

(T ).

The implication (⇐) is trivial, but in the reverse direction we have so far only shown
that (diagonalizable)⇒ V is spanned by its eigenspaces, so V =

∑r
i=1 Eλi

(T ) and every
v has at least one decomposition v =

∑

i vi : wq with vi ∈ Eλi
(T ). In a direct sum

⊕

i Eλi
(T ) the decomposition is unique, and in particular 0 =

∑

i vi with vi ∈ Eλi
(T )⇒

each term vi = 0.

4.4. Exercise. Finish the proof of the Diagonalizability Criterion (6). If V =
∑

i Eλi
(T )

prove that every v ∈ V has a unique decomposition v =
∑

i vi such that vi ∈ Eλi
(T ).

�

4.5. Proposition. If {λ1, · · · , λr} are the distinct eigenvalues in F for a linear operator
T : V → V on a finite dimensional vector space, and if the eigenspaces Eλi

span V , then
V is a direct sum Eλ1

⊕ · · ·⊕Eλr
. Furthermore,

1. dim(V ) =
∑r

i=1 dim(Eλi
) =

∑r
i=1 (geometric multiplicity of λi)

2. T is diagonalizable over F.

Proof: Since V =
∑

i Eλi
every vector in V has a decomposition v =

∑r
i=1 vi with

Vi ∈ Eλi
(T ), so we need only prove uniqueness of this decomposition, which in turn

reduces to proving that the vi are “independent” in the sense that

0 = v1 + ·+ vr with vi ∈ Eλi
⇒ v1 = · · · = vr = 0

Note that for µ, λ ∈ F, the linear operators (T −λI), (T −µI) commute with each other,
since I commutes with everybody. Now suppose

∑r
i=1 vi = 0 with T (vi) = λivi.

Fix an index i and apply the operator S =
∏

j 6=i(T − λjI) to the sum. We get

(7) 0 = S(0) = S(
r
∑

k=1

vk) =

r
∑

k=1

S(vk)

But if k 6= i, we can write

S(vk) =
∏

ℓ 6=i

(T − λℓI)vk = [
∏

ℓ 6=k,i

(T − λkI) ] · (T − λk)vk = 0

Hence the sum (7) reduces to

0 =
∑

k

S(vk) = S(vi) + 0 + · · ·+ 0 =
∏

ℓ 6=i

(T − λℓI)vi

Observe that we may write (T −λℓ) = i) = (T −λi)+(λi−λℓ)I, for all ℓ, so this becomes

(8) 0 = [
∏

ℓ 6=i

(T − λi) + (λi − λℓ)I] vi = 0 + [
∏

ℓ 6=i

(λi − λℓ)] vi

(because (T − λi)vi = 0). The constant c =
∏

ℓ 6=i(λi − λℓ) must be nonzero because
λℓ 6= λi. Therefore (7) ⇒ vi = 0. This works for every 1 ≤ i ≤ r so the vi are
independent, as required. �

4.6. Exercise. Let V be finite dimensional, {λ1, · · · , λr} the distinct eigenvalues in F

for an F-linear operator T : V → V . Let E =
∑r

i=1 Eλi
be the span of the eigenspaces.

(E ⊆ V ). Show that
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(a) E is T -invariant .

(b) T |E is diagonalizable. �

4.7. Exercise. Let T : V → V be an linear operator on a finite dimensional vector
space over F, with n = dimF(V ). If T has n distinct eigenvalues, prove that

(a) V =
⊕n

i=1 Eλi
,

(b) The eigenspace are all one-dimensional, and

(c) T is diagonalizable. �

4.8. Exercise. If a basis X for V passes through the successive eigenspaces Eλ1
(T ), · · · , Eλr

(T ),
and we then adjoin vectors outside of the subspace E =

∑

λi∈sp(T ) Eλi
(T ) to get a basis

for V , explain why the matrix of T has the form

[T ]X =

















λ1Im1×m1
0 0 ∗ ∗

· · · ∗ ∗
0 0 λrImr×mr

∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

















where mi = dim(Eλi
(T )). �

4.9. Definition. If T : V → V is linear operator on a finite dimensional vector space,
every root α ∈ F of the characteristic polynomial pT (x) = det(T − x I) is an eigenvalue
for T , so pT (x) is divisible (without remainder) by (x − α).Repeated division by (x − α)
may be possible, and yields a factorization pT (x) = (x− α)mαQ(x) where Q ∈ F[x] does
not have α as a root, and thus is not divisible by (x− α). The exponent mα is the alge-
braic multiplicity of the eigenvalue α.

Now suppose F is an algebraically closed field (every nonconstant polynomial f ∈ F[x]
has a root α ∈ F), for example F = C. It follows that every f over such a field splits
completely into linear factors f = c ·∏i=1(x−αi) where α1, · · · , αn are the roots of f(x)
in F (repeats allowed). If T : V → V is a linear operator on a finite dimensional vector
space over such a field, and λ1, . . . , λr are its distinct eigenvalues in F, the characteristic
polynomial splits completely

pT (x) = det(T − xI) = c ·
r
∏

j=1

(x− λj)
mj

where mj = the algebraic multiplicity of λj and
∑

j mj = dim(V ).

4.10. Corollary. Let T : V → V be a linear operator on a finite dimensional space V
over F = C. If the characteristic polynomial

pT (x) = det(T − x I) = c ·
r
∏

j=1

(x− λj)
mj

has distinct roots (so mj = 1 for all j), then r = n = dimC(V ) and T is diagonalizable.

Algebraic vs Geometric Multiplicity.

4.11. Proposition. If λ ∈ F is an eigenvalue for linear operator T : V → V , its alge-
braic multiplicity as a root of pT (x) = det(T − x I) is ≥ (geometric multiplicity of λ) =
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dimEλ.

Proof: Fix an eigenvalue λ. Then E = Eλ(T ) is T -invariant and T |E = λ · idE . So, if
we take a basis {e1, · · · , em} in Eλ and then add vectors em+1, · · · , en to get a basis X

for V , we have

[T ]X =

(

λIm×m ∗
0 ∗

)

(m = dim(Eλ(T ))

Here m is the geometric multplicity of λ and the characteristic polynomial is

pT (x) = det























(λ− x) 0
· ∗

0 (λ− x)

(am+1,m+1 − x) ∗
0 ·

∗ (an,n − x)























This determinant can be written as

(9) det(T − xI) =
∑

π∈Sn

sgn(π) · (T − xI)1,π(1) · . . . · (T − xI)n,π(n)

Each term in this sum involves a product of matrix entries, one selected from each row.
If the spots occupied by the selected entries in (9) are marked with a “�,” the marked
spots provide a “template” for making the selection, and there is one template for each
permutation π ∈ Sn: in Row(i), mark the entry in Col(j) with j = π(i).

The only n× n templates that can contribute to the determinant of our block-upper
triangular matrix (T−xI) are those in which the first m diagonal spots have been marked
(otherwise the corresponding product of terms will include a zero selected from the lower
left block). The remaining marked spots must then be selected from the lower right block
(∗) – i.e. from Row(i) and Col(j) with m + 1 ≤ i, j ≤ n, as indicated in the following
diagram.



















� 0
· ∗

0 �

· · � ·
0 � · · ·

· � · ·



















Thus pT (x) = det(T −xI) has the general form (x−λ)m ·G(x), in which the factor G(x)
might involve additional copies of λ. We conclude that

(algebraic multiplicity of λ) ≥ m = ( geometric multiplicity of λ) ,

as claimed. �

4.12. Example. Let T = LA : R3 → R3, with A =

0

@

4 0 1

2 3 2

1 0 4

1

A If X = {e1, e2, e3} is
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the standard Euclidean basis then [T ]X = A and the characteristic polynomial is

pT (x) = det(A− x I) = det





4− x 0 1
2 3− x 2
1 0 4− x





= [(4− x)(3− x)(4− x) + 0 + 0 ]− [(3− x) + 0 + 0 ]

= (12− 7x + x2)(4 − x)− 3 + x

= 48− 28x + 4x2 − 12x + 7x2 − x3 − 3 + x

= −x3 + 11x2 − 39x + 45

To determine sp(T ) we need to find roots of a cubic; however we can in this case guess a
root λ and then long divide by (x−λ). After a little trial and error it turns out that λ = 3
is a root, with pT (3) = −27 + 99− 117 + 45 = 0 and pT (x) = −(x− 3)(x2 − 8x + 15) =
−(x− 3)2(x− 5).

Eigenvalues in F = R (or F = Q) are λ1 = 3, λ2 = 5 with algebraic multiplicities
m1 = 2, m2 = 1. For the geometric multiplicities we must compute the eigenspaces
Eλk

(T ).

Case 1: λ = 3. We solve the system (A− 3I)x = 0 by row reduction.

[A− 3I ] =





1 0 1 0
2 0 2 0
1 0 1 0



 →





1 0 1 0
0 0 0 0
0 0 0 0





Columns in the row reduced system that do not meet a “step corner” ∗ correspond to
free variables in the solution; thus x2, x3 can take any value in F while x1 = −x3. Thus

Eλ=3 = ker(A− 3I) = {(−v3, v2, v3) : v2, v3 ∈ F, v1 = −v3}
= F · (−1, 0, 1)⊕ F · (0, 1, 0) = F(−e1 + e3)⊕ Fe2

These vectors are a basis and 2 = dim(Eλ=3) = (geometric multiplicity) = (algebraic
multplicity).

Case 2: λ = 5. Solving (A− 5I)v = 0 by row reduction yields

[A−5I ] =





−1 0 1 0
2 −2 2 0
1 0 −1 0



 →





−1 0 1 0
0 −2 4 0
0 0 0 0



 →





1 0 −1 0

0 1 −2 0
0 0 0 0





Now there is only one free variable x3, with x2 = 2x3 and x1 = x3. Thus

Eλ=5 = {(x3, 2x3, x3) : x3 ∈ F} = F · (1, 2, 1)

and

1 = dim(Eλ=5) = (geometric multiplicity of λ = 5) = (algebraic multiplicity).

Diagonalization: A basis Y consisting of eigenvectors is given by

f1 = −e1 + e3 f2 = e2 f3 = e1 + 2e2 + e3 .

and for this basis we have

[T ]Y =









3 0 0

0 3 0

0 0 5
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while [T ]X = A with respect to the standard Euclidean basis {ei}.

It is sometimes important to know the similarity transform SAS−1 = [T ]Y that effects
the transition between bases. The matrix S can be found by writing

[T ]YY = [id ◦ T ◦ id ]YY = [id ]YX · [T ]XX · [id]XY

= [id]YX ·A · [id]XY

Then S = [id]YX, with SXY = S−1 because

[id]XY · [id]YX = [id]XX = I3×3 (3× 3 identity matrix)

(All this is discussed in Chapter II.4 of the Linear Algebra I Notes.)
The easiest matrix to determine is usually S−1 = [id ]XY which can be written down

immediately if we know how to write basis vectors in Y in terms of those in the standard
basis X in F3). In the present example we have







id(f1) = −e1 + 0 · e2 + e3

id(f2) = 0 + e2 + 0
id(f3) = e1 + 2e2 + e3

⇒ S−1 = [id]XY =





−1 0 1
0 1 2
1 0 1





It is useful to note that the matrix [id]XY is just the transpose of the coefficient array in
the system of vector identities that express the fi in terms of the ej .

We can now find the desired inverse S = (S−1)−1 by row operations (or by Cramer’s
rule) to get

S =







−1
2

0 1
2

−1 1 −1
1
2

0 1
2







and then

SAS−1 =





3 0 0
0 3 0
0 0 5





as expected. That concludes our analysis of this example. �

4.13. Exercise. Fill in the details needed to compute S.

4.14. Example. Let A =

(

2 4
−1 −2

)

with F = R or C. Then

A2 =

(

−2 0
0 0

)

and A3 = 0 ,

so with respect to the standard basis in F2 the matrix of the map T = LA : F2 → F2 is
[T ]X = A and the characteristic polynomial is:

det(A− x I) = det

(

2− x 4
−1 −2− x

)

= −4 + x2 + 4 = x2

Thus, λ = 0 is a root (over R or C) with (algbraic multiplicity) = 2, but the geometric
multiplicity is dim (Eλ=0) = 1. When we solve the system (A − λI)x = Ax = 0 taking
λ = 0 to determine Eλ=0 = ker(LA), row reduction yields

(

2− λ 4 0
−1 −2− λ 0

)

=

(

2 4 0
−1 −2 0

)

→
(

1 2 0
0 0 0

)
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For this system x2 is a free variable and x1 = −2x2, so

Eλ=0 = F · (−2, 1) = F · (2e1 − e2) ,

and dim (Eλ=0) = 1 < (algebraic multiplicity) = 2. There are no other eigenvalues so
the best we can do in trying to reduce T is to find a basis such that [T ]Y has form

(

0 ∗
0 ∗

)

by taking Y = {f1, f2} where f1 = (2, 1) = 2e1+e2 and f2 is any other vector independent
of f1.

However, T is a nilpotent operator (verify this), so we can do better with a slightly
different basis Z that puts A into the Jordan canonical form for nilpotent operators (as
in Theorem 3.2). In the present example this is

[T ]Z =

(

0 1

0 0

)

(an elementary nilpotent matrix)

with two 1 × 1 blocks of zeros on the diagonal. In fact, in the notation of Theorem 3.2
we have kernels (0) ⊆ K1 = ker(T ) ⊆ K2 = ker(T 2) = V with

K1 = Eλ=0 = F · f1 and K2 = F2

So, if f2 is any vector transverse to ker(T ), we have T (f2) ∈ ker(T ) = F · f1. But
T (f2) 6= 0 since f2 /∈ K1, and by scaling f2 appropriately we can make T (f2) = f1. Then
Z = {f1, f2} is a basis that puts [T ]Z into the form shown above. �

4.15. Exercise. Repeat the analysis of the previous exercise for the matrix A =
(

4 4
−1 0

)

. �

That concludes our review of Diagonalization.

VII-5 Generalized Eigenspace Decomposition I.

The Fitting Decomposition (Proposition 1.5) is a first step in trying to decompose a
linear operator T : V → V over an arbitrary field.

5.1. Proposition (Fitting Decomposition). Given linear T : V → V on a finite
dimensional vector space over any field, then V = N ⊕ S for T -invariant subspaces N, S
such that T |S : S → S is a bijection (invertible linear operator on S), and T |N : N → N
is nilpotent.

The relevant subspaces are the “stable kernel” and “stable range” of T ,

K∞ =

∞
⋃

i=1

Ki, (Ki = ker(T i) with {0} ⊂
6= K1

⊂
6= · · · ⊂6= Kr = Kr+1 = · · · = K∞)

R∞ =

∞
⋂

i=1

Ri, (Ri = range(T i) with {0} ⊃
6= R1

⊃
6= · · · ⊃6= Rr = Rr+1 = · · · = R∞)

(see Section VII-1). Obviously, T = (T |R∞
) ⊕ (T |K∞

) which splits T into canonically
defined nilpotent and invertible parts.

5.2. Exercise. Prove that the Fitting decomposition is unique: If V = N ⊕ S, both T -
invariant, such that T |N is nilpotent and T |S : S → S invertible show that N = K∞(T )
and S = R∞(T ). �
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Given a linear operator T : V → V we may apply these remarks to the operators
(T − λI) associated with eigenvalues λ in spF(T ). The eigenspace Eλ(T ) = ker(T − λI)
is the first in an ascending chain of subspaces, shown below.

{0} ⊂
6= ker(T − λ) = Eλ(T )

⊂
6= ker(T − λ)2

⊂
6= · · · ⊂6= ker(T − λ)r = · · · = K∞(T − λ)

5.3. Definition. If λ ∈ F the “stable kernel” of (T − λI)

K∞(λ) =
∞
⋃

m=1

ker(T − λI)m

is called the generalized λ-eigenspace, which we shall hereafter denote by Mλ(T ).
Thus,

Mλ(T ) = {v ∈ V : (T − λI)kv = 0 for some k ∈ N}
⊇ Eλ(T ) = {v : (T − λI)v = 0}(10)

We refer to any λ ∈ F such that Mλ(T ) 6= (0) as a generalized eigenvalue for T . But
note that Mλ(T ) 6= {0} ⇔ Eλ(T ) 6= {0} ⇔ det(T − λI) = 0, so these are just the usual
eigenvalues of T in F.

Generalized eigenspaces have the following properties.

5.4. Lemma. The spaces Mλ(T ) are T -invariant.

Proof: T commutes with all the operators (T − λ)m, which commute with each other.
Thus, v ∈Mλ(T )⇒ (T − λI)kv = 0 for some k ∈ N⇒

(T − λI)kT (v) = T (T − λI)kv = T (0) = 0

Hence T (v) ∈Mλ(T ). �

We now show that T |Mλ
has a nice upper triangular form with respect to a suitably

chosen basis in Mλ.

5.5. Proposition. Every generalized eigenspace Mλ(T ), λ ∈ sp(T ), has a basis X such
that the matrix of T |Mλ(T ) has upper triangular form

[T |Mλ
]X =









λ ∗
·
·

0 λ









Proof: We already know that any nilpotent operator N on a finite dimensional vector
space can be put into strictly upper triangular form by a suitable choice of basis.

[N ]X =









0 ∗
·
·

0 0









Now write
T |Mλ

= (T − λI)|Mλ
+ λI|Mλ

in which V = Mλ, N = (T − λI)|Mλ
and I|Mλ

is the identity operator on Mλ. Since
[ I|Mλ

]X = Im×m for any basis, a basis that puts (T −λI)|Mλ
into strict upper triangular

form automatically yields

[ T |Mλ
]X = [ (T − λI)|Mλ

]
X

+ λI =





λ ∗
·

0 λ



 �
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The most precise result of this sort is obtained using the cyclic subspace decomposition
for nilpotent operators (Theorem 3.2) to guide our choice of basis. As a preliminary step
we might pick a basis X aligned with the kernels

(0)
⊂
6= K1 = ker(T )

⊂
6= K2 = ker(T 2)

⊂
6= . . .

⊂
6= Kd = V

where d = deg(T ). As we indicated earlier in Exercise 2.4, [T ]X is then upper triangular
with zero blocks Zi, 1 ≤ i ≤ d = deg(T ), on the diagonal. Applying this to a generalized
eigenspace Mλ(T ), the matrix of the nilpotent operator T −λI becomes upper triangular
with zero blocks on the diagonal. Writing T = (T − λI) + λI as above we see that
the matrix of T with respect to any basis X running through successive kernels Ki =
ker(T − λI)i must have the form

[T |Mλ
]
X

= λ · In×n + [ T − λI ]X

=















λ · Im1×m1
∗

λ · Im2×m2

. . .

0 λ · Imr×mr















(11)

with mi = dim(Ki/Ki−1) = dim(Ki)−dim(Ki−1) and n = dim(V ) =
∑

i mi. The shape
of the “block upper triangular form” (11) is completely determined by the dimensions of
the kernels Ki = Ki(T − λI).

Note that (11) can be viewed as saying T |Mλ
= λIλ + Nλ where Iλ = idMλ

, λIλ is a
scalar operator on Mλ, and Nλ = (T −λI)|Mλ

is a nilpotent operator whose matrix with
respect to the basis X is similar to the matrix in (11), but with mi ×mi zero-blocks on
the diagonal. The restriction T |Mλ

has an “additive decomposition” T |Mλ
= (diagonal)

+ (nilpotent) into commuting scalar and nilpotent parts,

T |Mλ
= λ · I + Nλ =









λ ∗
·
·

0 λ









=









λ 0
·
·

0 λ









+









0 ∗
·
·

0 0









Furthermore, the nilpotent part Nλ turns out to be a polynomial function of (T |Mλ
),

so both components of this decomposition also commute with T |Mλ. There is also a
“multiplicative decomposition” T |Mλ

= (diagonal) · (unipotent) = (λI) · Uλ where Uλ is
the unipotent operator (I + Nλ); for the corresponding matrices we have









λ ∗
·
·

0 λ









=









λ 0
·
·

0 λ









·









1 ∗
·
·

0 1









Note: The off-diagonal entries (∗) in Nλ and Uλ need not be the same in these two
decompositions.

As we show below, this description of the way T acts on Mλ can be refined to provide
much more information about the off-diagonal terms (∗), but we will also see that for
many purposes the less explicit block upper triangular form (11) will suffice, and is easy
to compute since we only need to determine the kernels Ki.

Now consider what happens if we take a basis Y in Mλ corresponding to a cyclic
subspace decomposition of the nilpotent operator

Nλ = (T − λI)|Mλ
= (T |Mλ

)− λIλ (Iλ = I|Mλ
)
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Then [λIλ]Y is λ times the identity matrix (as it is for any basis in Mλ) while [Nλ]Y
consists of diagonal blocks, each an elementary nilpotent matrix Ni.

[ Nλ]Y = [ (T − λI)|Mλ
]Y =















N1 0

·
·
·

0 Nr















and

Ni =













0 1 0
· ·
· ·
· 1

0 0













of size di× di, with Ni a 1× 1 zero matrix when di = 1. This yields the “Jordan block
decomposition” of T |Mλ

(12) [ T |Mλ
]Y = λ[I|Mλ

]Y + [ Nλ]Y =















T1 0

·
·

Tm

0 λ · Ir×r















with Ti = λ · Idi×di
+ (elementary nilpotent) when di > 1,

Ti =













λ 1 0
· ·
· ·
· 1

0 λ













The last block in (12) is exceptional. The other Ti correspond to the restrictions T |Ci(λ)

to cyclic subspaces of dimension di > 1 in a cyclic subspace decomposition

Mλ(T ) = C1(λ)⊕ . . . ⊕ Cm(λ)

of the generalized eigenspace. However, some of the cyclic subspaces might be one-
dimensional, and any such Ci(λ) is contained in the ordinary eigenspace Eλ(T ). If there
are r such degenerate cyclic subspaces we may lump them together into a single subspace

E =
⊕

{Ci(λ) : dim(Ci(λ)) = 1} ⊆ Eλ(T ) ⊆Mλ(T )

such that dim(E) = s and T |E = λ · IE . It should also be evident that

s + d1 + . . . + dm = dim (Mλ(T ))

This is the Jordan Canonical Form for the restriction (T |Mλ
) of T to a single gen-

eralized eigenspace. If Mλ(T ) 6= 0 the description (12) is valid for any ground field F,
since it is really a result about the nilpotent operator (T − λ)Mλ

. Keep in mind that
the T -invariant subspaces in a cyclic subspace decomposition of Mλ (or of any nilpotent
operator) are not unique, but the number of cyclic subspaces in any decomposition and
their dimensions are uniques, and we get the same matrix form (12) for a suitably chosen

25



basis.

VII-6. Generalized Eigenspace Decomposition of T .

So far we have only determined the structure of T restricted to a single generalized
eigenspace Mλ(T ). Several obstacles must be surmounted to arrive at a similar structure
for T on all of V .

• If the generalized eigenspaces Mλi
(T ) fail to span V , knowing the behavior of T

only on their span

M =
∑

λ∈sp(T )

Mλ(T )

leaves the gobal behavior of T beyond reach.

• It is equally important to prove (as we did in Proposition 4.5 for ordinary eigenspaces)
that the span of the generalized eigenspaces is in fact a direct sum,

M =
⊕

λ∈sp(T )

Mλ(T )

That means the actions of T on different Mλ are independent and can be examined
separately, yielding a decomposition T |M =

⊕

λ∈sp(T ) (T |Mλ
) .

Both issues will be resolved in our favor for operators T : V → V provided that the
characteristic polynomial pT (x) splits into linear factors in F[x]. This is always true if
F = C; we are not so lucky for linear operators over F = R or over a finite field such as
F = Zp. When this program succeeds the result is the Jordan Canonical Decomposition.

6.1. Theorem (Jordan Canonical Form). If T : V → V is a linear operator on a
finite dimensional space whose characteristic polynomial pT (x) = det(T −x I) splits over
F, then V is a direct sum of its generalized eigenspaces

V =
⊕

λ∈sp(T )

Mλ(T ) ,

and since the Mλ(T ) are T -invariant we obtain a decomposition of T itself

(13) T =
⊕

λ∈sp(T )

T |Mλ(T )

into operators, each of which can be put into Jordan upper triangular form (12) by choos-
ing bases compatible with a decomposition of Mλ into T -invariant cyclic subspaces.

Proof that the generalized eigenspaces are independent components in a direct sum
follows the same lines as a similar result for ordinary eigenspaces (Proposition VII-4.5),
but with more technical complications. Proof that they span V will require some new
ideas based on the Fitting decomposition.

6.2. Proposition (Independence of the Mλ). The span M =
∑

λ∈sp(T ) Mλ(T ) of

the generalized eigenspaces (which may be a proper subspace in V ) is always a direct sum,
M =

⊕

λ∈sp(T ) Mλ(T ).

Proof: Let λ1, . . . , λr be the distinct eigenvalues in F. By definition of “direct sum” we
must show the components Mλ are independent, so that

(14) 0 = v1 + · · ·+ vr, with vi ∈Mλi
⇒ each term vi is zero.
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Fix an index k. For for each 1 ≤ i ≤ r, let mj = deg(T −λjI)|Mλj
. If vk = 0 we’re done;

and if vk 6= 0 let m ≤ mk be the smallest exponent such that (T − λkI)mvk = 0 and
(T − λkI)m−1vk 6= 0. Then w = (T − λkI)m−1vk is a nonzero eigenvector in Eλk

.
Define

A =
∏

i6=k

(T − λiI)mi · (T − λk)m−1

which is keyed to the particular index λk as above. We then have

0 = A(0) = 0 + Avk (since Avi = 0 for i 6= k)

=
∏

i6=k

(T − λi)
mi((T − λk)m−1vk) =

∏

i6=k

(T − λi)
miw

=
∏

i6=k

[(T − λk) + (λk − λi)]
mi

w (a familiar algebraic trick)

=
∏

i6=k

mi
∑

s=0

(
mi

s) (T − λk)mi−s(λk − λi)
sw (binomial expansion of [· · · ]mi)

All terms in the binomial sum are zero except when s = mi, so we get

0 = [
∏

i6=k

(λk − λi)
mi ] · w

The factor [· · · ] is nonzero because the λi are the distinct eigenvalues of T in F, so w
must be zero. This is a contradiction because w 6= 0 by definition. We conclude that
every term vk in (14) is zero, so the span M is a direct sum of the Mλ. �

Further Properties of Characteristic Polynomials. Before takling up the proof
of Theorem 6.1 we digress to develop a few more facts about characteristic polynomi-
als, in order to work out the relationship between sp(T ) and sp(T |R∞

) where R∞ =
R∞(T − λ1I).

6.3. Lemma. If A ∈ M(n, F) has form A =

(

B ∗
0 C

)

where B is r × r and C is

(n− r)× (n− r), then det(A) = det(B) · det(C).

6.4. Corollary. If A ∈ M(n, F) is upper triangular with values c1, . . . , cn on the diago-

nal, then det(A) =

n
∏

i=1

ci.

Proof (Lemma 6.3): Consider an n × n template corresponding to some σ ∈ Sn. If
any of the marked spots in columns C1, · · · , Cr occur in a row Ri with r + 1 ≤ i ≤ n,
then aij = ai,σ(i) = 0 and so is the corresponding term in

∑

σ∈Sn
(· · · ). Thus all columns

Cj , 1 ≤ j ≤ r, must be marked in rows R1, . . . , Rr if the template is to yield a nonzero
term in det(A). It follows immediately that all columns Cj with r + 1 ≤ j ≤ n must be
marked in rows Ri with r + 1 ≤ i ≤ n if σ is to contribute to

det(A) =
∑

σ∈Sn

sgn(σ) ·
n
∏

i=1

ai,σ(i)

Therefore only permutations σ that leave invariant the blocks of indices [1, r], [r+1, n] can
contribute. These σ are composites of permutations µ = σ|[1,r] ∈ Sr and τ = σ|[r+1,n] ∈
Sn−r, with

σ(k) = µ× τ(l) =

{

µ(k) if 1 ≤ k ≤ r
τ(k − r) if r + 1 ≤ k ≤ n
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Furthermore, we have sgn(σ) = sgn(µ×τ) = sgn(µ)·sgn(τ) by definition of sgn, because
µ, τ operate on disjoint subsets of indices in [ 1, n ].

In the matrix A we have

Bk,ℓ = Ak,ℓ for 1 ≤ k, ℓ ≤ r

Ck,ℓ = Ak+r,ℓ+r for r + 1 ≤ k, ℓ ≤ n

so we get

det(A) =
∑

(µ,τ)∈Sr×Sn−r

sgn(µ× τ) · (
r
∏

i=1

Bi,µ(i)) · (
n−r
∏

j=1

Cj,τ(j))

= (
∑

µ∈Sr

sgn(µ) ·
r
∏

i=1

Bi,µ(i)) · (
∑

τ∈Sn−r

sgn(τ) ·
n−r
∏

j=1

Cj,τ(j))

= det(B) · det(C) �

6.5. Corollary. If T : V → V is a linear operator on a finite dimensional vector space
and M ⊆ V is a T -invariant subspace, the characteristic polynomial pT |M (x) divides
pT (x) = det(T − x I) in F[x].

Proof: If M ⊆ V is T -invariant and we take a basis X = {ei} that first spans M and
then picks up additional vectors to get a basis for V , the matrix [T ]X has block upper

triangular form

 

A ∗

0 B

!

, and then

[ T − xI ]X =

(

A− xI ∗
0 B − xI

)

But it is trivial to check that A − xI = [(T − xI)|M ]X′ where X′ = {e1, · · · , er} are the
initial vectors that span M . Thus det (A − xI)] = det ((T − xI)|M) = pT |M (x) divides
pT (x) = det(A− xI) · det(B − xI). �

6.6. Exercise. Let (V, M, T ) be as in the previous corollary. Then T induces a linear
map T̃ from V/M → V/M such that T̃ (v + M) = T (v) + M , for v ∈ V . Prove that the
characteristic polynomial pT̃ (x) = detV/M (T̃ − xI), also divides pT (x) = det(A − xI) ·
det(B − xI). �

6.7. Lemma. If f and P are nonconstant polynomials in F[x] and P divides f , so
f(x) = P (x)Q(x) for some other Q ∈ F[x], then P (x) must split over F if f(x) does.

Proof: If Q is constant there is nothing to prove. Nonconstant polynomials f 6= 0 in F[x]
have unique factorization into irreducible polynomials f =

∏r
i=1 Fi, where Fi cannot be

written as a product of nonconstant polynomials of lower degree. Each polynomial f, P, Q
has such a factorization P =

∏m
k=1 Pk, Q =

∏m
j=1 Qj so f = PQ =

∏

k Pk ·
∏

j Qj. Since

f splits over F it can also be written as a product of linear factors f(x) =
∏n

i=1(x− αi)
where {αi} are the roots of f(x) in F, counted according to their multiplicities. Linear
factors (x − α) are obviously irreducible and the two irreducible decomposition of f(x)
must agree. Thus P (and Q) are products of linear factors and P (x) splits over F. �

This lemma has a useful Corollary.

6.8. Corollary. If the characteristic polynomial pT (x) of a linear operator T : V → V
splits over F, so does pT |W for any T -invariant subspace W ⊆ V .
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Over F = C, all non-constant polynomials split.

Proof of Theorem 6.1. T has eigenvalues because pT splits and its distinct eigenvalues
{λ1, · · · , λr} are the distinct roots of pT in F. Recall that Eλ 6= {0} ⇔Mλ 6= {0}.

Pick an eigenvalue λ1 and consider the Fitting decomposition V = K∞ ⊕ R∞ with
respect to the operator (T − λ1I), so K∞ is the generalized eigenspace Mλ1

(T ) while
R∞ is the stable range of (T − λ1I). Both spaces are invariant under T − λ1I, and also
under T since λ1I commutes with T . It will be important to note that

λ1 cannot be an eigenvalue of T |R∞
,

for if v ∈ R∞ is nonzero then (T −λ1I)v = 0⇒ v ∈ K∞∩R∞ = {0}. Hence sp(T |R∞
) ⊆

{λ2, · · · , λr}.
We now argue by induction on n = dim(V ). There is little to prove if n = 1. [There

is an eigenvalue, so Eλ = V and T = λI on V .] So, assume n > 1 and the theorem has
been proved for all spaces V ′ of dimension < n and all operators T ′ : V ′ → V ′ such that
det(T ′ − λI) splits over F. The natural move is to apply this inductive hypothesis to
T ′ = T |R∞(T−λ1I) since dim(R∞) = dim(V ) − dim(Mλ1

) < dim(V ) = n. But to do so
we must show pT ′ splits over F. [ If F = C, every polynomial in C[x] splits, and this issue
does not arise.]

By Corollary 6.8 the characteristic polynomial of T ′ = T |R∞
splits over F, and by in-

duction on dimension R∞(T ′) is a direct sum of generalized eigenspaces for the restricted
operator T ′.

R∞(T ′) =
⊕

µ∈sp(T ′)

Mµ(T ′) ,

where sp(T ′) = the distinct roots of p|T ′ in F. To compare the roots of pT and pT ′ , we
invoke the earlier observation that pT ′ divides pT . Thus the roots sp(T ′) = sp(T |R∞

)
are a subset of the roots sp(T ) of pT (x), and in particular every eigenvalue µ for T ′ is
an eigenvalue for T . Let’s label the distinct eigenvalues of T so that

sp(T ′) = {λs, λs+1, · · · , λr} ⊆ sp(T ) = {λ1, · · · , λr}

(with s > 1 because λ1 /∈ sp(T |R∞
), as we observed earlier).

Furthermore, for each µ ∈ sp(T ′) the generalized eigenspace Mµ(T ′) is a subspace of
R∞ ⊆ V , and must be contained in Mµ(T ) because (T ′ − µI)kv = 0 ⇒ (T − µI)kv = 0
for all v ∈ R∞. Thus,

R∞ =
⊕

µ∈sp(T ′)

Mµ(T ′) ⊆
∑

µ∈sp(T ′)

Mµ(T ) ⊆
∑

λ∈sp(T )

Mλ(T )

(R∞ =
⊕

µ∈sp(T ′) Mµ(T ′) by the induction hypothesis). Therefore the generalized

eigenspaces Mλ, λ ∈ sp(T ), must span V because

V = K∞ ⊕R∞ = Mλ1
(T )⊕R∞ ⊆ Mλ1

(T )⊕ (
⊕

µ∈sp(T ′)

Mµ(T ′))

⊆ Mλ1
(T ) + (

∑

µ∈sp(T ′)

Mµ(T )) (because Mµ(T ′) ⊆Mµ(T ))(15)

⊆ Mλ1
(T ) + (

∑

λ∈sp(T )

Mλ(T )) ⊆ V (because sp(T ′) ⊆ sp(T ))

Conclusion: the Mλ(T ), λ ∈ sp(T ), span V so by Proposition 6.2 V is a direct sum of
its generalized eigenspaces. That finishes the proof of Theorem 6.1. �
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It is worth noting that

sp(T ′) = {λ2, . . . , λr} and Mλi
(T ′) = Mλi

(T ) for 2 ≤ i ≤ r .

Since Mµ(T ′) ⊆Mµ(T ) for all µ ∈ sp(T ′), and Mλ1
(T ) ∩ V ′ = (0), λ1 cannot appear in

sp(T ′); on the other hand every µ ∈ sp(T ′) must lie in sp(T ).

Consequences. Some things can be proved using just the block upper-triangular form
for T rather than the more detailed Jordan Canonical form.

6.9. Corollary. If the characteristic polynomial of T : V → V splits over F, and in
particular if F = C, there is a basis X such that [T ]X has block upper triangular form

(16) [T ]X =















T1 0

·
·
·

0 Tr















with blocks on the diagonal

Ti =













λi ∗
· ·
· ·
·

0 λi













of size mi ×mi such that

1. λ1, . . . , λr are the distinct eigenvalues of T .

2. The block sizes are the algebraic multiplicities mi of the λi in the splitting of the
characteristic polynomial pT (t) (see the next corollary for details).

3. pT (x) = (−1)n ·∏r
j=1(x− λi)

mj with n = m1 + · · ·+ mr.

The blocks Ti may or may not have off-diagonal terms. �

6.10. Corollary. If the characteristic polynomial of an n × n matrix A splits over F,
there is a similarity transform A 7→ SAS−1, S ∈ GL(n, F), such that SAS−1 has the
block upper-triangular form shown above.

6.11. Corollary. If the characteristic polynomial of T : V → V splits over F, and in
particular if F = C, then for every λ ∈ sp(T ) we have

(algebraic multiplicity of λ) = dim(Mλ) = mi

where mi is the block size in (16)).

Proof: Taking a basis such that [T ]X has the form (16), [ T − xI ]X will have the same
form, but with diagonal entries λi replaced by (λi − x). Then

det[T − xI]X =

r
∏

j=1

(λj − x)dim(Mλj
) = pT (x)

since the block Tj correspond to T |Mλj
. Obviously, the exponent on (λj − x) is also the

multiplicity of λj in the splitting of the characteristic polynomial pT . �

6.12. Corollary. If the characteristic polynomial of an n × n matrix A, with distinct
eigenvalues spF(A) = {λ1, . . . , λr}, splits over F then
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1. det(A) =
∏r

i=1 λmi

i , the product of eigenvalues counted according to their algebraic
multiplicities mi.

2. Tr(A) =
∑r

i=1 miλi, the sum of eigenvalues counted according to their algebraic
multiplicities mi.

3. More generally, if F = C there are explicit formulas for all coefficients of the
characteristic polynomial when we write it in the form

pA(x) = det(A− x I) =

n
∑

i=0

(−1)ici(A)xi

If eigenvalues are listed according to their multiplicities mi = m(λi), say as µ1, . . . , µn

with n = dim(V ),

µ1 = . . . = µm1
= λ1 µm1+1 = . . . = µm1+m2

= λ2 etc

then cn = 1 and

cn−1 =

n
∑

j=1

µj = Tr(A),

...

cn−k =
∑

j1<...<jk

µj1 · . . . · µjk
,

...

c0 = µ1 · . . . · µn = det(A)

These formulas fail to be true if F = R and pT (x) has non-real roots in C.

6.13. Corollary. If the characteristic polynomial of an n × n matrix A splits over F,
then T : V → V is diagonalizable if and only if

(algebraic multiplicity) = (geometric multiplicity) for each λ ∈ sp(T ).

Both multiplicities are then equal to dim(Eλ(T )).

Proof: Eλ ⊆Mλ for every eigenvalue, and by the previous corollary we know that

(geometric multiplicity) = dim(Eλ) ≤ dim(Mλ) = (algebraic multiplicity) .

Furthemore, Mλ = ker(T − λI)N for large N ∈ N. Writing V = Mλ1
⊕ . . . ⊕Mλr

, the
implication (⇐) follows because

(algebraic multiplicity) = (geometric multiplicity)

⇒ dim(Eλi
) = dim(Mλi

) for all i

⇒ Mλi
= Eλi

since Mλi
⊇ Eλi

⇒ V =

r
⊕

i=1

Eλi
and T is diagonalizable.

For (⇒): if T is diagonalizable we have V =
⊕r

i=1 Eλi
, but Eλi

⊆ Mλi
for each i.

Comparing this with the Jordan decomposition V =
⊕r

i=1 Mλi
we see that Mλi

= Eλi
.

�
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6.14. Corollary. If A is an n×n matrix whose characteristic polynomial splits over F,
let X be a basis that puts [T ]X into Jordan form, so that

(17) [T ]X =















T1 0

·
·
·

0 Tr















with Ti =













λi 1 0
· ·
· ·
· 1

0 λi













Then with respect to the same basis the powers I, T, T 2, · · · take form:

(18) [T k]X =

















T k
1 0

·
·
·

0 T k
r

















with Ti =













λi 1 0
· ·
· ·
· 1

0 λi













Proof: [T k
i ]X = ([Ti]X)

k
for k = 0, 1, 2, · · · . �

In (18) there may be blocks of various sizes with the same diagonal values λi.
These particular powers [T k] = [T ]k are actually easy to compute. Each block Ti has

the form Ti = λiI + Ni with Ni an elementary nilpotent matrix, so we have

T k
i =

k
∑

j=0

(
k

i )λk−jN j
i (binomial expansion) ,

with N j
i = 0 when j ≥ deg(Ni).

6.15. Exercise. If N is an r × r elementary nilpotent matrix

N =













0 1 0
· ·
· ·
· 1

0 0













show that N2 =













0 0 1 0
· ·
· 1
· 0

0 0













,

Each new multiple of N moves the diagonal file of 1′s one step to the upper right, with
N r = 0 at the last step. �

6.16. Exercise. If the characteristic polynomial of T : V → V splits over F, there is a
basis that puts [T ]X in Jordan form, with diagonal blocks

A = λI + N =













λ 1 0
· ·
· ·
· 1

0 λ













Compute the exponential matrix

Exp(tA) = etA =

∞
∑

n=0

tn

n!
An
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for t ∈ F.
Hint: If A and B commute we have eA+B = eA · eB; apply the previous exercise.
Note: Since N is nilpotent the exponential series is a finite sum. �

The Spectral Mapping Theorem. Suppose A is an n×n matrix whose characteristic
polynomial splits over F, with

pA(x) = det(A− x I) = c ·
r
∏

i=1

(λi − x I)mi if sp(T ) = {λ1, . . . , λr} .

Examination of the diagonal entries in the Jordan Canonical form (16), or even the upper
triangular form (17), immediately reveals that

sp(T k) = the distinct entries in the list of powers λk
1 , . . . , λk

r

Be aware that there might be repeated entries among the λk
i , even though the λi are

distinct. (Devise an example in which sp(T k) reduces to a single point even though sp(T )
contains several distinct points.)

Therefore the characteristic polynomial of T k is the product of the diagonal entries
(λk

i − x) in the Jordan form of (T k − x I),

pT k(x) = det(T k − x I) =

r
∏

i=1

(λk
i − x)mi , (where mi = dim(Mλi

(T )) .

More can be said under the same hypotheses. If f(t) = a0 + a1t + a2t
2 + · · ·+ amtm

is any polynomial in F[t] we can form an operator f(T ) that maps V → V to obtain a
natural corresponding Φ : F[t]→ HomF(V ) such that

Φ(1-) = I, Φ(t) = T, Φ(tk) = T k

and

Φ(f1 + f2) = Φ(f1) + Φ(f2) (sum of linear operators)

Φ(f1 · f2) = Φ(f1) ◦ Φ(f2) (composition of linear operator)

Φ(cf) = c ·Φ(f) for all c ∈ F

I.e. Φ is a homomorphism between associative algebras. With this in mind we can prove:

6.17. Theorem. (Spectral Mapping Theorem). If the characteristic polynomial of
a linear operator T : V → V splits over F, and in particular if F = C, every polynomial
f(t) =

∑m
i=0 ait

i in F[t] determines an operator Φ(f) in HomF(V, V ),

Φ(f) =

m
∑

i=0

aiT
i

The correspondence Φ : F[t| → HomF(V ) is a unital homomorphism of associative alge-
bras and has the following spectral mapping property

(19) sp(f(T )) = f(sp(T )) = {f(z) : z ∈ sp(T )}
In particular, this applies if T is diagonalizable over F.

Proof: It suffices to choose a basis X such that [T ]X has block upper-triangular form

[T ]X =













T1 0
·
·
·

0 Tr













with Ti =













λi ∗
· ·
· ·
·

0 λi
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of size mi ×mi since [T k]X = [T ]kX (matrix product) for k = 0, 1, 2, · · · . Hence

[f(T )]X = f([T ]X) = a0I + a1[T ]X + · · ·+ am[T ]mX

because f(A) = a0I + a1A + · · ·+ amAm for any matrix A.
As in the previous corollary, it follows that [f(T )]X is made up of blocks on the diago-

nal, each of which is upper-triangular with diagonal values f(λi); then the characteristic
polynomial of f(T ) is

pf(T )(x) = det(f(T )− x I) =

r
∏

i=1

(f(λi)− x I)mi , mi = dim(Mλi
) .

This is zero if and only if x = f(λi) for some i, so sp(f(T )) = {f(λi) : 1 ≤ i ≤ r} =
f(sp(T )). Obviously the characteristic polynomial of f(T ) splits over F if pT (t) splits.

Here λi ∈ sp(T ) ⇒ f(λi) ∈ sp(f(T )), but the multiplicity of f(λi) as an eigenvalue
of f(T ) might be greater than the multiplicity of λi as an eigenvalues of T because we
might have f(λi) = f(λj), and then µ = f(λi) will have multiplicity at least mi + mj in
sp(f(T )).

Another consequence is the Cayley-Hamilton theorem, which can be proved in other
ways without developing the Jordan Canonical form. However this normal form suggests
the underlying reason why the result is true, and makes its validity almost obvious. On
the other hand, alternative proofs can be made to work for arbitrary F and T , without
any assumptions about the characteristic polynomial pT (x). Since the result is true in
this generality, we give both proofs.

6.18. Theorem. (Cayley-Hamilton). For any linear operator T : V → V on a finite
dimensional vector space, over any F, we have

pT (T ) = [ pT (t)|
t=T

] = 0 (the zero operator in HomF(V, V )) ,

Thus, applying the characteristic polynomial pT (x) = det(T − x I) to the linear operator
T itself yields the zero operator.

Proof: If pT (x) splits over F we have pT (x) =
∏r

i=1 (λi − x)mi , where mi = dim(Mλi
)

and {λ1, · · · , λr} are the (distinct) eigenvalues in spF(T ). We want to show that

0 =
r
∏

i=1

(T − λiI)mi = [ pT (x)|
x=T

]

But V =
⊕r

i=1 Mλi
and (T − λiI)mi(Mλi

) = (0) [Given a Jordan basis in Mλi
, A =

[(T − λiI)|Mλi
]X consists of elementary nilpotent blocks Nj on the diagonal; the size

dj × dj of such a block cannot exceed mi = dim(Mλi
), so N

dj

j = Nmi

j = 0 for each j.]

Hence
∏r

j=1(T − λiI)mi(Mλi
) = (0), so the operator pT (T ) is zero on each Mλi

and on
all of V . �

If pT does not split over F, a different argument shows that pT (T )v = 0 for all v ∈ V .

Alternative Proof (6.18): The result is obvious if v = 0. If v 6= 0 there is a largest
m ≥ 1 such that v, T (v), T 2(v), · · · , T m−1(v) are linearly independent. Then

W = F-span{T k(v) : k ∈ N} = F-span{T k(v) : 0 ≤ k ≤ m− 1}

and {v, T (v), · · · , T m−1(v)} is a basis for the cyclic subspace W . This space is clearly
T -invariant, and as we saw before, p(T |W ) divides pT , so that pT (x) = p(T |W )(x) ·Q(x) for
some Q ∈ F[x]. We now compute p(T |W )(x). For the basis X = {v, T (v), · · · , T m−1(v)}
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we note that T m(v) = T (T m−1(v)) is a unique linear combination of the previous vectors
T k(v), say

T m(v) + am−1T
m−1(v) + · · ·+ a1T (v) + a0v = 0 .

Hence,

[T |W ]
X

=













0 0 −a0

1 · −a1

· · ·
· · ·

0 1 −am−1













and [ (T−x I)|W ]
X

=













−x 0 −a0

1 · −a1

· · ·
· · ·

0 1 −x− am−1













6.19. Exercise. Show that

p(T |W )(x) = det(T |W − x I)X = (−1)m(tm + am−1t
m−1 + ·+ a1t + a0) . �

It follows that p(T |W )(T ) satisfies the equation

p(T |W )(T )v = (−1)m(T n(v) + am−1T
m−1(v) + ·+ a1T (v) + a0v) = 0

by definition of the coefficients {aj}. But then

pT (T )v = Q(T ) · [ p(T |W )(T )v] = Q(T )(0) = 0 .

(Recall that W = F-span{T k(v)} as in Propositions 2.5 and 2.7.) Since this is true for
all v ∈ V , pT (T ) is the zero operator in HomF(V, V ). �

Remarks: If T : V → V is a linear operator on a finite dimensional vector space the
polynomial Q(x) = xm + am−1x

m−1 + · · · + a0 in F[x] of minimal degree such that
Q(T ) = 0 is called the minimal polynomial for T . The polynomial function of T defined
above by substituting x = T

T m + am−1T
m−1 + · · ·+ a1T + a0I = 0

is precisely the minimal polynomial for T . The Jordan form (12) can be used to determine
the minimal polynomial, but the block upper-triangular form (11) is too crude for this
purpose. (The problem is that the nilpotence degree deg(N) of a nilpotent matrix will
be greater than the degree of the minimal polynomial unless there is a cyclic vector in
V .) �

6.20. Example. Let T : V → V be a linear map on V = R4 whose matrix with respect
to the standard basis X = {e1, · · · , e4} has the form

A = [T ]X =









7 1 2 2
1 4 −1 −1
−2 1 5 −1
1 1 2 8









so that A− 6I =









1 1 2 2
1 −2 −1 −1
−2 1 −1 −1
1 1 2 2









After some computational work which we omit, we find that

pT (t) = det(A− xI) = (x− 6)4 = x4 − 4(6x3) + 6(62x2)− 4(63x) + 64 ,

so spR(T ) = {6} with algebraic multiplicity m = 4. Thus V = Mλ=6(T ) and (T − 6I) is
nilpotent. We find K1 = ker(T−6I) = Eλ=6(T ) by row reduction of [T−6I]X = [A−6I ],

[A− 6I]→









1 1 2 2
0 −3 −3 −3
0 3 3 3
0 0 0 0









→









1 1 2 2

0 1 1 1
0 0 0 0
0 0 0 0
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Figure 7.2. The version of Figure 7.1 worked out in Example 6.20. Although there are three
columns, Column 2 is empty and has been deleted in the present diagram. All the basis vectors

e
(i)
j are shown

Thus,

K1 = {v = (−s− t,−s− t, s, t) : s, t ∈ R}
= R-span{f (1)

1 = −e1 − e2 + e3 , f
(1)
2 = −e1 − e2 + e4}

= R-span{(−1,−1, 1, 0) , (−1,−1, 0, 1)}

and dim(K1) = 2. Next row reduce ker(A− 6I )2 to get

[A− 6I ]2 →









0 3 3 3
0 3 3 3
0 −6 −6 −6
0 3 3 3









→









0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0









The first column (which meets no “step corner”) corresponds to free variable x1; the
other free variables are x3, x4. Thus K2 = ker(A− 6I)2 is

K2 = {v = (a,−b− c, b, c) : a, b, c ∈ R}
= R-span{f (2)

1 = e1 , f
(2)
2 = e3 − e2 , f

(2)
3 = e4 − e2} = R-span{e1, e3 − e2, e4 − e2}

and dim(K2) = 3. Finally (A− 6I)3 = 0, so deg(T − 6I ) = 3 and K3 = V .
We now apply the procedure for finding cyclic subspaces outlined in Figure 7.1.

Step 1: Find a basis for V mod K2. Since dim(V/K2) = 1 this is achieved by taking

any v ∈ V ∼ K2. One such choice is e
(1)
1 = e2 = (0, 1, 0, 0), which obviously is not in K2.

Then compute its images under powers of (T − 6I),

e
(1)
2 = (T − 6I)e

(1)
1 = (1,−2, 1, 1) = e1 − 2e2 + e3 + e4 ∈ K2 ∼ K1

e
(1)
3 = (T − 6I)2e

(1)
1 = (3, 3,−6, 3) = 3(e1 + e2 − 2e3 + e4) ∈ K1 ∼ {0}

Step 2: There is no need to augment the vector

e
(1)
2 = (T − 6I)e

(1)
1 = (1,−2, 1, 1) ∈ K2

to get a basis for K2/K1, because dim(K2/K1) = 1.

Step 3: In K1 ∼ {0} we must augment e
(1)
3 = (T − 6I)2e

(1)
1 to get a basis for K1/K0

∼=
K1. We need a new vector e

(3)
1 ∈ K1 ∼ {0} such that e

(3)
1 and e

(1)
3 are independent

mod K0 = (0) – i.e. vectors that are actually independent in V . We could try e
(3)
1 =
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(−1,−1, 0, 1) = −e1 − e2 + e4 which is in K1 ∼ K0. Independence holds if and only if

the matrix M whose rows are e
(1)
3 and e

(3)
1 has rank = 2. But row operations yield

(

1 1 −2 1
−1 −1 0 1

)

→
(

1 1 −2 1
0 0 −2 2

)

which has row rank = 2, as desired.

Thus {T 2(e(1)
1 ), T (e(1)

1 ), e(1)
1 ; e

(3)
1 } is a basis for all of V such that

C1 = R-span{T 2(e(1)
1 ), T (e(1)

1 ), e(1)
1 },

C2 = R-span{e(3)
1 }

are independent cyclic subspaces, generated by the vectors e
(1)
1 and e

(3)
1 . The ordered

basis Y = {T 2(e(1)
1 ), T (e(1)

1 ), e(1)
1 ; e

(3)
1 } puts [T ]Y in Jordan canonical form

[T ]Y =











6 1 0 0
0 6 1 0
0 0 6 0

0 0 0 6











Basis vectors T 2(e(1)
1 ) and e

(3)
1 are eigenvectors for the action of T and Eλ=6(T ) =

F-span{e(3)
1 , T 2(e(3)

1 )} is 2-dimensional. �

6.21. Exercise. Find the Jordan canonical form for the linear operators T : Rn → Rn

whose matrices with respect to the standard bases X = {e1, · · · , en} are

(a) A =





5 −6 −6
−1 4 2
3 −6 −4



 (b) B =

















1 0 0 0 1 0
0 1 1 1 0 −1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 1 −1
0 0 0 0 0 1

















The Minimal Polynomial for T : V → V . The space of linear operators HomF(V, V ) ∼=
M(n, F) is finite dimensional, so there is a smallest exponent m ∈ N such that the pow-
ers I, T, T 2, . . . , T m−1 are linearly independent. Thus there are coefficients cj such that

T m +
∑m−1

j=0 cjT
j = 0 (the zero operator) The monic polynomial

xm +

m−1
∑

j=0

cjx
j in F[x]

is the (unique) minimal polynomial mT (x) for this operator. Obviously d = deg(mT )
cannot exceed n2 = dim(M(n, F)), but it could be a lot smaller. The minimal polynomial
for a matrix A ∈M(n, F) is defined the same way, and it is easy to see that the minimal
polynomial mT (x) for a linear operator is the same as the minimal polynomial of the
associated matrix A = [T ]X, and this is so for every basis X in V . Conversely the minimal
polynomial mA(x) of a matrix coincides with that of the linear operator LA : Fn → Fn

such that LA(v) = A · v (matrix product of (n×N)× (n) column vector).
Computing mT (x) could be a chore, but it is easy if we know the Jordan form for T ,

and this approach also reveals interesting connections between the minimal polynomial
mT (x) and the characteristic polynomial pT (x) = det(T − x I). We have already seen
that the characteristic polynomial is a “similarity invariant” for matrices (or for linear
operators), so that
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A similarity transformation, A 7→ SAS−1 yields a new matrix with the same
characteristic polynomial, so pSAS−1(x) = pA(x) in F[x] for all invertible
matrices S.

(See Section II.4 of the Linear Algebra I Class Notes for details regarding similarity
transformations, and Section V.1 for invariance of the characteristic polynomial.) The
minimal polynomial is also a similarity invariant, a fact that can easily be proved directly
from the definitions.

6.22. Exercise. Explain why the minimal polynomial is the same for:

1. A matrix A and the linear operator LA : Fn → Fn.

2. A linear operator T : V → V on a finite dimensional vector space and its matrix
A = [T ]X with respect to any basis in V �

6.23. Exercise. Prove that the minimal polynomial mA(x) of a matrix A ∈ M(n, F) is
a similarity invariant: mSAS−1(x) = mA(x) for any invertible n× n matirx S. �

We will use Example 6.22 to illustrate how the minimal polynomial can be found if
the Jordan form for a matrix is known, but first let’s compute and compare mA(x) and
pA(x) for a diagonal matrix. If

A =









λ1Id1
0

. . .

0 λrIdr









where Ik = k × k identity matrix.

Obviously the characteristic polynomial, which depends only on the diagonal values of
A, is pA(x) =

∏r
j=1(λj − x)dj ; in contrast, we will show that the minimal polynomial is

the product of the distinct factors,

mA(x) =
r
∏

j=1

(λj − x) ,

each taken with multiplicity one – i.e. for diagonal matrices, mA(x) is just pA(x), ignor-
ing multiplicities.

MORE TEXT TO BE ADDED RE: MIN POLYN

VII-7 Applications of Jordan Form to Differential Equations.

Computing the exponential eA =
∑∞

n=0
1
n!A

n of a matrix turns out to be important in
many applications, one of which will be illustrated below. This is not an easy calculation
if you try to do it by summing the series. In fact, computing a product of n×n matrices
seems to require n3 multiplication operations on matrix entries and computing a high
power such as A200 directly could be a formidable task. But it can be done by hand for
diagonal matrices, and for elementary nilpotent matrices (see Exercises 6.15 - 6.16), and
hence for any matrix that is already in Jordan Canonical form. For a linear operator
T : V → V the Jordan form is obtained by choosing a suitable basis in V ; for a matrix
A this amounts to finding an invertible matrix S such that the similarity transform
A 7→ SAS−1 puts A into Jordan form. Similarity transforms are invertible operations
that interact nicely with the matrix-exponential operation, with

(20) SeAS−1 = eSAS−1

for every A ∈M(n, C) .
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Thus if we can determine the Jordan form B for A, we can compute eA in four simple
steps,

A → Jordan form B = SAS−1

→ eB = eSAS−1

(a calculation that can be done by hand)

→ eA = S−1eBS = eS−1BS (because B = SAS−1)

Done. Note that eD will have block upper-triangular form if D has Jordan form.
This idea was illustrated for diagonalizable matrices and operators in the Linear

Algebra I Notes, but in the following example you will see that it is easily adapted to
deal with matrices whose Jordan form can be determined. Rather that go through such
a calculation just to compute eA, we will go the extra parsec and show how the ability
to compute matrix exponentials is the key to solving systems of constant coefficient
differential equations.

Solving Linear Systems of Ordinary Differential Equations.
If A ∈ M(n, F) for F = R or C and x(t) = (x1(t), . . . , xn(t)) is a differentiable function

with values in Fn, the vector identity

(21)
dx

dt
= A · x(t) x(0) = c = (c1, . . . , cn)

is a system of constant coefficient differential equations with initial conditions xk(0) = ck

for k = 1, . . . , n. There is a unique solution for all −∞ < t <∞, given by x(t) = etA · c.
This follows because the vector-valued map x(t) is infinitely differentiable, with

d

dt
(etA) = A · etA for all t ∈ R ,

from which we get
dx

dt
=

d

dt
(etA) · c = AetA · c = A · x(t) .

Solving the differential equation (21) therefore reduces to computing etA, but how do
you do that? As noted above, if A has a characteristic polynomial that splits over F (or
if F = C), we can find a basis that puts A in Jordan canonical form. That means we
can, with some effort, find a nonsingular S ∈ M(n, F) such that B = SAS−1 consists of
diagonal blocks

B =











B1 0

·
·

0 Br











,

each having the form

Bk =













λk 1 0
· ·
· ·
· 1

0 λk













= λkI + Nk

where λk ∈ spF(A), and Nk is either an elementary (cyclic) nilpotent matrix, or a 1× 1
block consisting of the scalar λk, in which the elementary nilpotent part is degenerate.
(Recall the discussion surrounding equation (12)). Obviously,

SetAS−1 = S(
∞
∑

k=0

tk

k!
Ak)S−1 =

∞
∑

k=0

tk

k!
SAkS−1 = et SAS−1

,
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but SAkS−1 = (SAS−1)
k

for k = 0, 1, 2 . . ., so

SetAS−1 =

∞
∑

k=0

tk(SAS−1)k

k!
=









etB1 0
·
·

0 etBr









= etB

Here etB = et(λI+N) = etλI · etN because eA+B = eA · eB when A and B commute, and
then we have

etB = eλtI · [
d−1
∑

j=0

tj

j!
N j ] = eλtI ·

















1 t t2

2! · · · td−1

(d−1)!

· ·
...

· · t2

2!
1 t

0 1

















of size d×d. These matrices can be computed explicitly and so can the scalars etλ. Then
we can recover etA by reversing the similarity transform to get

etA = S−1etBS

which requires computing two products of explicit matrices. The solution of the original
differential equation

dx

dt
= Ax(t) with inital condition x(0) = c

is then x(t) = etA · c, as above.

7.1. Exercise. Use the Jordan Canonical form to find a list of solutions A ∈ M(2, C)
to the matrix identity

A2 + I = 0 (the “square roots of −I) ,

such that every solution is similar to one in your list.
Note: SA2S−1 = (SAS−1)2. �
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Chapter VIII. Complexification.

VIII.1. Analysis of Linear Operators over R.

How can one analyze a linear operator T : V → V when the characteristic polynomial
pT (x) does not split over F? One approach is via the “Rational Canonical form,” which
makes no attempt to replace the ground field F with a larger field of scalars K over which
pT might split; we will not pursue this topic in these Notes. A different approach, which
we will illustrate for F = R, is to enlarge F by constructing a field of scalars K ⊇ F; then
we may in an obvious way regard F[x] as a subalgebra within K[x], and since K ⊇ F

there is a better chance that f(x) will split into linear factors in K[x]

(22) f(x) = c ·
d
∏

j=1

(x− µj)
mj with c and µj in K.

It is in fact always possible to embed F in a field K that is algebraically closed, which
means that every polynomial f(x) ∈ K[x] splits into linear factors belonging to K[x], as
in (22).

The Fundamental Theorem of Algebra asserts that the complex number field is alge-
braically closed; but the real number system R is not – for instance x2 + x + 2 ∈ R[x]
cannot split into linear factors in R[x] because it has no roots in R. However, it does
split when regarded as an element of C[x],

x2 + x + 1 = (x − z+) · (x− z−)− (x− 1
2
(−1 + i

√
3)) · (x + 1

2
(−1− i

√
3))

where i =
√
−1 . In this simple example one can find the complex roots z± = 1

2
(−1±i

√
3)

using the quadratic formula.
Any real matrix A ∈ M(n, R) can be regarded as a matrix in M(n, C) whose entries

happen to be real. Thus the operator

LA(x) = A · x (matrix multiplication)

acting on n×1 column vectors can be viewed as a linear operator T : Rn → Rn, but also
as a “complexified” operator TC : Cn → Cn on the complexified space Cn = Rn + iRn.
Writing vectors z = (z1, · · · , zn) with complex entries zj = xj + iyj (xj , yj ∈ R), we may
regard z as a combination z = x + iy with complex coefficients of the real vectors x =
(x1, . . . , xn) and y = (y1, . . . , yn) in Rn. The complexified operator TC ∈ HomC(Cn, Cn)
can then be expressed in terms of the original R-linear map T : Rn → Rn:

(23) TC(x + iy) = T (x) + iT (y), TC ∈ HomC(Cn, Cn) for x, y ∈ V.

The result is a C-linear operator TC whose characteristic polynomial pTC
(t) ∈ C[t] turns

out to be the same as pT (t) when we view pT ∈ R[t] as a polynomial in C[t] that happens
to have real coefficients. Since pTC

(t) always splits over C, all the preceding theory applies
to TC. Our task is then to translate that theory back to the original real linear operator
T : Rn → Rn.

1.1. Exercise. If T is a linear operator from Rn → Rn and TC : Cn → Cn is its
complexification as defined in (23), verify that the characteristic polynomials pT (t) ∈ R[t]
and pTC

(t) ∈ C[t] are “the same” – i.e. that

pTC
(t) = pT (t)
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when we identify R[t] ⊆ C[t].
Hint: Polynomials in F[t] are equal⇔ they have the same coefficients in F. Here, pTC

has
coefficients in C while pT has coefficients in R, but we are identifying R = R + i0 ⊆ C.
�

Relations between R[t] and C[t]. When we view a real coefficient polynomial f(t) =
∑m

j=0 ajt
j ∈ R[t] as an element of C[t] it can have complex roots as well as real roots,

but

When we view f(t) ∈ R[x] as an element of C[x], any non-real roots must
occur in conjugate pairs z± = (u ± iv) with u and v real. Such eigenvalues
can have nontrivial multiplicities, resulting in factors (t− z+)m · (t− z−)m in
the irreducible factorization of f(t) in C[t].

In fact, if z = x + iy with x, y real and if f(z) = 0, the complex conjugate z = x− iy is
also a root of f because

f(z) =

m
∑

j=0

ajz
j =

m
∑

j=0

ajzj =
∑

j

ajzj = f(z) = 0

(Recall that z + w = z + w, zw = z · w, and (z)− = z for z, w ∈ C.)
Thus, #(non-real roots) is even, if any exist, while the number of real roots is unre-

stricted, and might be zero. Thus the splitting of f in C[t] can written as

f(t) = c ·
r
∏

j=1

(t− µj)
mj (t− µj)

mj ·
s
∏

k=r+1

(t− rj)
mk

= c ·
r
∏

j=1

[ (t− µj)(t− µj) ]
mj ·

s
∏

k=r+1

(t− rj)
mk(24)

where the µj are complex and nonreal (µ 6= µ), and the rj are the distinct real roots
of f . Obviously n = deg(f) =

∑r
j=1 2mj +

∑s
j=r+1 mj . Since f has real coefficients,

all complex numbers must disappear when the previous equation is multiplied out. In
particular, for each nonreal conjugate pair µ, µ we have

(25) Qµ(t) = (t− µ)(t− µ) = t2 − 2Re(µ) + |µ|2 ,

a quadratic with real coefficients. Hence,

f(t) = c ·
s
∏

r+1

(t− rj)
mj ·

r
∏

j=1

(Qµj
(t))mj

is a factorization of f(t) into linear and irreducible quadratic factors in R[t], and every
f ∈ R[t] can be decomposed this way. This is the (unique) decomposition of f(t) into
irreducible factors in R[t]: by definition, the Qµ(t) have no real roots and cannot be a
product of polynomials of lower degree in R[t], while the linear factors are irreducible as
they stand.

1.2. Definition. A nonconstant polynomial f ∈ F[t] is irreducible if it cannot be fac-
tored as f(t) = g(t)h(t) with g, h nonconstant and of lower degree than f . A polynomial
is monic if its leading coefficient is 1. It is well known that every monic f ∈ F[t] factors
uniquely as

∏r
j=1 hj(t)

mj where each hj monic and irreducible in F[t]. The exponent
mj ≥ 1 is its multiplicity, and this factorization is unique.

The simplest irreducibles (over any F) are the linear polynomials at+ b (with a 6= 0 since
“irreducibility” only applies to nonconstant polynomials). This follows from the degree
formula
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Degree Formula: deg(gh) = deg(g)+deg(h) for all nonzero g, h ∈ F[t].

If we could factor at+b = g(t)h(t), either g(t) or h(t) would have degree 0, and the other
would have degree 1 = deg(at + b). Thus there are no nontrivial factorization of at + b.
When F = C, all irreducible polynomials have degree = 1, but if F = R they can have
degree = 1 or 2.

1.3. Lemma. The irreducible monic polynomials in R[t] have the form

1. (t− r) with r ∈ R, or

2. t2 + bt + c with b2− 4c < 0. These are precisely the polynomials (t− µ)(t− µ) with
µ a non-real element in C.

Proof: Linear polynomials at + b (a 6= 0) in R[t] are obviously irreducible. If f has the
form of (2.), the quadratic formula applied on be applied to f(t) = t2 + bt + c in C[x] to
find its roots

µ, µ =
−b±

√
b2 − 4c

2
=
−b± i

√
4c− b2

2
There are three possible outcomes:

1. f(x) has a single real root with multiplicity m = 2 when b2 − 4c = 0 and then we

have f(t) = (t− 1
2
b)2;

2. There are two distinct real roots r± = 1
2
( − b ±

√
b2 − 4c) when b2 − 4c > 0, and

then f(t) = (t− r+)(t− r−);

3. When the discriminant b2− 4c is negative there are two distinct conjugate nonreal
roots in C,

µ =
−b +

√
b2 − 4c

2
and µ =

−b− i
√

4c− b2

2
(i =

√
−1),

in which case f(t) = (t− µ)(t− µ) has the form (25) in R[t].

The quadratic f(t) is irreducible in R[t] when f(t) has two nonreal roots; otherwise it
would have a factorization (t− r1)(t − r2) in R[t] and also in C[t]. That would disagree
with (x− µ)(x − µ), contrary to unique factorization in C[t], and cannot occur. �

Complexification of Arbitrary Linear Operators over R. We now discuss com-
plexification of arbitrary vector spaces over R and complexifications TC of the R-linear
operators T : V → V that act on them.

1.4. Definition. (Complexification). Given an arbitrary vector space V over R

its complexification VC is the set of symbols {z = x + iy : x, y ∈ V } equipped with
operations

z + w = (x + iy) + (u + iv) = (x + u) + i(y + v)

(a + ib) · z = (a + ib)(x + iy) = (ax− by) + i(bx + ay), for a + ib ∈ C

Two symbols z = (x+ iy) and z′ = (x′ + iy′) designate the same element of VC ⇔ x′ = x
and y′ = y.

1. The real points in VC are those of the form V + i0. This set is a vector space
over R (but not over C), because

(c + i0) · (x + i0) = (cx) + i0 for c ∈ R, x ∈ V

(x + i0) + (x′ + i0) = (x + x′) + i0 for x, x′ ∈ V.

Clearly the operations (+) and (scale by real scalar c+i0) match the usual operations
in V when restricted to V + i0.
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2. If T : V → V is an R-linear operator its complexification TC : VC → VC is defined
to be the map

(26) TC(x + iy) = T (x) + iT (y), x, y ∈ V ,

which turns out to be a C-linear operator on VC.

We indicate this by writing “TC = T + iT .”

1.5. Exercise. If M1, . . . , Mr are vector spaces over R prove that the complexification
of V = M1 ⊕ . . . ⊕Mr is VC = (M1)C ⊕ . . . ⊕ (Mr)C. �

1.6. Exercise. Prove that VC is actually a vector space over C. (Check each of the
vector space Axioms.)
Hint: In particular, you must check that (z1z2) · w = z1 · (z2 · w), for z1, z2 ∈ C and
w ∈ VC, and that (c + i0)scdot(x + i0) = (c ·x) + i0 for c ∈ R, so V + i0 is a subspace
over R isomorphic to V . �

1.7. Example. We verify that

1. TC is in fact a C-linear operator on the complex vector space VC.

2. When we identify V with the subset V + i0 in VC via the map j : v 7→ v + i0, the
restriction TC|V +i0 gets identified with the original operator T in the sense that

TC(v + i0) = T (v) + i · 0 for all v ∈ V .

Thus the folowing diagram is commutative, with TC ◦ j = j ◦ T

V
j−→ V + i0 ⊆ VC

T ↓ ↓ TC

V
j−→ V + i0 ⊆ VC

with TC ◦ j = j ◦ T .

Discussion: Commutativity of the diagram is immediate from the definitions of VC

and TC. The messy part of proving (1.) is showing that TC(z · w) = z · TC(w) for
z ∈ C,w ∈ VC, so we will only do that. If z = a + ib ∈ C and w = u + iv in VC we get

TC((a + ib)(u + iv)), = TC((au − bv) + i(bu + av))

= T (au− bv) + iT (bu + av) = aT (u)− bT (v) + ibT (u) + iaT (v)

= (a + ib) · (T (u) + iT (v)) = (a + ib) · TC(u + iv) �

1.8. Example. If {ej} is an R-basis in V , then {ẽj = ej + i0} is a C-basis in VC. In
particular, dimR(V ) = dimC(VC).

Discussion: If w = v + iw (v, w ∈ V ) there are real coefficients {cj}, {dj} such that

w = (
∑

j

cjej) + i (
∑

j

djej) =
∑

j

(cj + idj)(ej + i0) ,

so the {ẽj} span VC. As for independence, if we have

0 + i0 =
∑

zj ẽj =
∑

(cj + idj) · (ej + i0) = (
∑

j

cjej) + i (
∑

j

djej)

in VC for coefficients zj = cj + idj in C, then
∑

j cjej = 0 =
∑

j djej , which implies
cj = 0 and dj = 0 because {ej} is a basis in V . Thus zj = 0 for all j. �

1.9. Example. If V = Rn then VC = Rn + iRn is, in a obvious sense, the same as Cn.
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If A ∈M(n, R), we get a R-linear operator T = LA that maps v → A · v (matrix product
of n×n times n× 1), whose matrix with respect to the standard basis X = {ej} in Rn is
[T ]X = A. If {ẽj = ej + i0} = Y is the corresponding basis in VC, it is easy to check that
we again have [TC]Y = A – i.e. TC is obtained by letting the matrix A with real entries
act on complex column vectors by matrix multiply (regarding A as a complex matrix
that happens to have real entries). �

1.10. Definition (Conjugation). The conjugation operator J : VC → VC maps
x + iy → x− iy. It is an R-linear operator on VC, with

J(c · w) = c · J(w) if c = c + i0 ∈ R ,

but is conjugate linear over C, with

J(z · w) = z · J(w) for z ∈ C, w ∈ VC

J(w1 + w2) = J(w1) + J(w2)

Further properties of conjugation are easily verified from this definition:

1. J2 = J ◦ J = id, so J−1 = J .

2. w ∈ VC is a real point if and only if J(w) = w .(27)

3.
w + J(w)

2
= x + i0 and

w − J(w)

2i
= y + i0, if w = x + iy in VC.

The operator J can be used to identity the C-linear maps S : VC → VC, of real type,
those such that S = TC = T + iT for some R-linear T : V → V .

1.11. Exercise. Whether F = R or C, a matrix in M(n, F) determines a linear operator
LA : Fn → Fn. Verify the following relationships between operators on V = Rn and
VC = Cn = Rn + iRn.

1. If F = R, (LA)
C

= LA + iLA : Cn → Cn is the same as the operator LA : Cn → Cn

we get by regarding A as a complex matrix all of whose entries are real.

2. Consider A ∈ M(n, C) and regard Cn as the complexification of Rn. Verify that
LA : Cn → Cn is of real type ⇔ all entries in A are real, so A ∈M(n, R).

3. If S and T are R-linear operators on a real vector space V , is the map

(S + iT ) : (x + iy)→ S(x) + iT (y)

on VC a C-linear operator? If so, when is it of real-type? �

1.12. Exercise. If T : V → V is an R-linear operator on a real vector space, prove
that

1. (TC)
k

= (T k)
C

for all k ∈ N

2. e(TC) = (eT )
C

on VC �

1.13. Lemma. If T : V → V is R-linear and TC is its complexification, then TC

commutes with J ,
JTC = TCJ (or equivalently JTCJ = TC).

Conversely, if S : VC → VC is any C-linear operator the following statements are equiva-
lent

1. S = TC = T + iT for some real-linear T : V → V .
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2. SJ = JS.

3. S leaves invariant the R-subspace of real vectors V + i0 in VC.

Proof: For (1.)⇒ (2.) is trivial:

JTCJ(x + iy) = JTC(x− iy) = J(T (x) + iT (−y)) = J(T (x)− iT (y))

= T (x) + iT (y) = TC(x + iy)

For (2.)⇒ (3.), suppose SJ = JS. We have w ∈ V + i0 if and only if w = 1
2
(w + J(w)),

and for these w we have

S(w) = 1
2
(S(w) + S(J(w)) = 1

2
(J(S(w)) + S(w)) .

By the properties (27), S(w) is a vector in V + i0.

For (3.)⇒ (1.), if S leaves V + i0 invariant then S(x+ i0) = T (x)+ i0 for some uniquely
determined vector T (x) ∈ V . We claim that T : x 7→ T (x) is an R-linear map. In fact, if
c1, c2 ∈ R and v1, v2 ∈ V , we have

S((c1x1 + c2x2) + i0) = T (c1x1 + c2x2) + i0 ,

while S (being C-linear) must also satisfy the identities

S((c1x1 + c2x2) + i0) = S((c1x1 + i0) + (c2x2 + i0)) = S(c1x1 + i0) + S(c2x2 + i0)

= S((c1 + i0) · (x1 + i0) + (c2 + i0) · (x2 + i0))

= (c1 + i0) · (Tx + i0) + (c2 + i0) · (T (x2) + i0)

= (c1T (x1) + c2T (x2)) + i0

Thus T is R-linear on V . Furthermore, S = TC because

TC(x + iy) = T (x) + iT (y) = (T (x) + i0) + i(T (y) + i0)

= S(x + i0) + iS(y + i0) (by C-linearity of S and definition of T )

= S((x + i0) + i(y + i0)) = S(x + iy)

Thus S : VC → C is of real type if and only if JS = SJ , and then S = (S|V +i0))C
. �

An Application. The complexified operator TC acts on a complex vector space VC and
therefore can be put into Jordan form (or perhaps diagonalized) by methods worked out
previously. We now examine the special case when TC is diagonalizable, before taking
up the general problem: if TC : VC → VC is diagonalizable, what can be said about the
structure of the original R-linear operator T : V → V ?

We start with an observation that holds for any R-linear operator T : V → V , whether
or not TC is diagonalizable.

1.14. Lemma. If pT (t) =
∑m

j=0 ajt
j (aj ∈ R), then pTC

= pT in the sense that

pTC
(t) =

∑m
j=0(aj + i0)tj in C[t] ⊇ R[t].

Proof: Earlier we proved that if X = {ej} is an R-basis in V then Y = {ẽj = ej + i0}
is a C-basis in VC, and that [T ]X = [TC]Y because

TC(ẽj) = TC(ej + i0) = T (ej) + iT (0) = (
∑

k

tkj · ek) + i0

=
∑

k

(tkj + i0)(ek + i0) =
∑

tkj ẽj
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Thus [TC]ij = tij = [T ]ij . Subtracting tI and taking the determinant, the outcome is the
same whether F = R or C. �

Hereafter we write pT for pTC
leaving the context to determine whether pT is to be

regarded as an element of R[x] or C[x]. As noted earlier, pT always splits in C[x], but
might not split as an element of R[x]. Furthermore, the nonreal roots in the factorization
(24) come in conjugate pairs, so we may list the eigenvalues of TC as follows, selecting
one representative µ from each conjugate pair µ, µ

(28) µ1, µ1, · · · , µr, µr; λr+1, · · · , λs, with λi real and µj 6= µj .

and repeating eigenvalues/pairs according to their multiplicity in pTC
(t).

Now assume TC is diagonalizable, with (complex) eigenspaces Eλi
, Eµj

, Eµj
in VC

that yield a direct sum decomposition of VC. Now observe that if µ 6= µ then w ∈ VC is
an eigenvector for µ if and only if J(w) is an eigenvector for µ because

(29) TC(J(w)) = J(TC(w)) = J(µw) = µJ(w)

Hence, J(Eµ(TC)) = Eµ(TC) and J is an R-linear bijection between Eµ(TC) and Eµ(TC).
Observe that J(Eµ ⊕Eµ) = Eµ⊕Eµ even though neither summand need be J-invariant
(although we do have J(Eλ) = Eλ when λ is a real eigenvalue for TC). The complex
subspaces Eµ⊕Eµ are of a special “real type ”in VC owing to their conjugation-invariance.

1.15. Definition. If W is a C-subspace of the complexification VC = V + iV , its real
points are those in WR = W ∩ (V + i0). This is a vector space over R that determines
a complex subspace (WR)C ⊆W by taking C-linear combinations.

(WR)C = WR + iWR ⊆W

In general, WR + iWR can be a lot smaller than the original complex subspace W . We
say that a complex subspace W ⊆ VC is of real-type if

W = WR + iWR

where WR = W ∩ (V + i0) is the set of real points in W .

Thus a complex subspace of real type W is the complexification of its subspace of real
points WR.

Subspaces of real type are easily identified by their conjugation-invariance.

1.16. Lemma. A complex subspace W in a complexification VC = V + iV is of real type
if and only if J(W ) = W .

Proof: W = WR + iWR so J(W ) = WR − iWR = WR + iWR since WR = −WR, proving
(⇒). Conversely, for (⇐) : if J(W ) = W and we write w ∈W as w = x + iy (x, y ∈ V ),
both

1
2
(w + J(w)) = x + i0, and

1

2i
(w − J(w)) = y − i0

are in V + i0, and both are in WR = W ∩(V + i0). Since w = (x+ i0)+ i(y+ i0) = x+ iy,
we conclude that w ∈ WR + iWR, so W is of real type. �

The spaces W = Eµ ⊕ Eµ (and W = Eλ for real λ) are obviously of real type since
J(Eµ) = Eµ. We now compare what is happening in a complex subspace W with what
goes on in the real subspace WR. Note that TC(WR) ⊆WR because

TC(WR) = TC(W ∩ (V + i0)) = TC(W ) ∩ TC(V + i0)

⊆ W ∩ (T (V ) + i0) ⊆ W ∩ (V + i0) = WR
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Case 1: λ ∈ sp(TC) is real. Proposition 8.17 below shows that Eλ(TC) = (Eλ(T ))
C

if
λ ∈ R. We have previously seen that an arbitrary R-basis {fj} for Eλ(T ) corresponds to

a C-basis f̃j = fj + i0 in (Eλ(T ))
C

= Eλ(TC). But

TC(f̃j) = λ · f̃j = λ · (fj + i0) = λfj + i0 ,

since f̃j ∈ Eλ(TC), while

TC(f̃j) = (T + iT )(fj + i0) = T (fj) + i0 .

Hence T (fj) = λfj and T = TC|(Eλ(T )+i0) is diagonalizable over R.

1.17. Proposition. If T : V → V is a linear operator on a real vector space and λ is a
real eigenvalue for TC : VC → VC, then λ ∈ spR(T ) and

Eλ(TC) = Eλ(T ) + iEλ(T ) = (Eλ(T ))C

In particular, dimC(Eλ(T )) = dimR(Eλ(T )) for real eigenvalues of T .

Proof: λ + i0 ∈ spC(TC) ∩ (R + i0) if and only if there is a vector u + iv 6= 0 in VC such
that TC(u+ iv) = (λ+ i0)(u+ iv) = λu+ iλv. But because TC(u+ iv) = T (u)+ iT (v) this
happens if and only if T (v) = λv and T (u) = λu, and since at least one of the vectors
u, v ∈ V is nonzero we get λ + i0 ∈ spC(TC) ∩ (R + i0) ⊆ spR(T ).

Conversely, suppose x + iy ∈ Eλ(TC) for real λ. Then

TC(x + iy) = (λ + i0)(x + iy) = λx + iλy ,

but we also have

TC(x + iy) = TC(x + i0) + iTC(y + i0) = T (x) + iT (y)

because TC is C-linear. This holds if and only if T (x) = λx and T (y) = λy, so that

x + iy ∈ Eλ(T ) + iEλ(T ) = (Eλ(T ))C . �

1.18. Corollary. We have spC(TC) ∩ (R + i0) = spR(T ) for any R-linear operator
T : V → V on a finite dimensional real vector space.

1.19. Exercise. Let VC = V + iV be the complexification of a real vector space V and
let S : VC → VC be a C-linear operator of real type, S = TC = T +iT for some T : V → V .
Let W = WR + iWR ⊆ VC be a complex subspace of real type that is S-invariant. Verify
that

(a) S(WR + i0) ⊆ (WR + i0) and (b) S|(WR+i0) = (T |WR
) + i0 . �

This will be the key to determining structure of an R-linear operator T : V → V from
that of its complexification TC : VC → VC.

Consider now the situation not covered by Case 1 above.

Case 2: Nonreal conjugate pairs µ, µ. The space Eµ,µ = Eµ(TC)⊕Eµ(TC) is of real
type and TC-invariant; TC is an operator of real type on VC by definition. Let us list the
pairs of non-real eigenvalues µ, µ according to their multiplicities as in (28), and let

f
(µ)
j = xµ

j + iyµ
j with (xj , yj ∈ V )

be a C-basis for Eµ(TC), so that

Eµ(TC) =

d
⊕

j=1

Cf
(µ)
j and TC|Eµ

= µ · IEµ
.
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Since J(Eµ) = Eµ, we get a matching C-basis in Eµ =
⊕d

j=1 CJ(f
(µ)
j ) using (29).

J(f
(µ)
j ) = xµ

j − ixµ
j

Then for 1 ≤ i ≤ d = dimC(Eµ) define the 2-dimensional complex subspaces in Eµ,µ

V µ
j = Cf

(µ)
j ⊕ CJ(f

(µ)
j ), j = 1, 2, · · · , d = dimC(Eµ(TC))

These are TC-invariant and are of real type since they are J-invariant by definition.
Clearly Eµ⊕Eµ =

⊕d
j=1 V µ

j . We claim that for each V µ
j , we can find a C-basis consisting

of two real vectors in (V µ
j )R = (V µ

j ) ∩ (V + i0) (something that cannot be done for the

spaces Cf
(µ)
j or Eµ alone).

We prove W = WR+iWR. If f
(µ)
j = xj +iyj, J(f

(µ)
j ) = xj−iyj, then xj = xj +i0 and

yj = yj + i0 are in (V µ
j )R but their C-span includes f

(µ)
j and J(f (µ)

j ), and is obviously

all of V
(µ)
j ; these real vectors are a C-basis for V

(µ)
j . They are also an R-basis for the

2-dimensional space (V µ
j )R = (Rxj + Ryj) + i0 of real points in V

(µ)
j .

Note that xj + i0 ∈ (V µ
j )R can be written as

xj + i0 = 1
2
(f (µ)

j + J(f
(µ)
j )), and similarly

yj + i0 =
1

2i
(f (µ)

j − J(f
(µ)
j )) .

As previously noted, TC (resp. T ) leaves V µ
j (resp. (V µ

j )R) invariant.
We now determine the matrix of Tj = T |(V µ

j
)R

with respect to the ordered R-basis

Xj = {x(µ)
j , y

(µ)
j }. If µ = a + ib with a, b real and b 6= 0, then µ = a− ib; suppressing the

superscript “µ” for clarity, we then have

TC(xj + iyj) = µ(xj + iyj) = (a + ib)(xj + iyj) = (axj − byj) + i(ayj + bxj)

TC(xj − iyj) = µ̄(xj − iyj) = (a + ib)(xj − iyj) = (axj − byj)− i(ayj + bxj)

Write µ in polar form

µ, µ = a± ib = re±iθ = r cos(θ)± ir sin(θ) .

TC and J commute because TC is of real type TC, and since J(zw) = zJ(w) for z ∈ C we
get

T (xj) + i0 = TC(xj + i0) = TC(
fj + J(fj)

2
) =

TC(fj) + J(TC(fj))

2

= 1
2
[ (a + ib)fj + J((a + ib)fj)]

= 1
2
[ (a + ib)(xj + iyj) + (a− ib) · (xj − iyj) ]

= (axj − byj)

= xj · r cos(θ)− yj · r sin(θ)

Similarly, we obtain

T (yj) + i0 = TC(
wj − J(wj)

2i
) = (ayj + bxj) = xj · r sin(θ) + yj · r cos(θ)

We previously proved that [TC]{ẽi} = [T ]{ei} for any R-basis in (V (µ)
j )

R
, so the matrix

of Tj : (V µ
j )R → (V µ

j )R with respect to the R-basis Xj = {xj , yj} in (V
(µ)
j )R is

[T |(V µ
j

)R
]
Xj

= r ·
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)

49



Reversing order of basis vectors yields basis X′ij = {yµ
j , xµ

j } such that the matrix of

T |(V µ
j

)R
is a scalar multiple r ·R(θ) of the rotation matrix R(θ) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

that corresponds to a counterclockwise rotation about the origin by θ radians, with
θ 6= π, 0 (mod 2π) because µ = a + ib is nonreal (b 6= 0).

Of course, with respect to the complex basis Y = {J(f
(µ)
j ), f

(µ)
j } = {xj−iyj, xj+iyj}

in V µ
j the operator TC|V µ

j
is represented by the complex diagonal matrix

[ TC|V µ
j

]Y =

(

r e−iθ 0
0 r eiθ

)

=

(

µ 0
0 µ

)

To summarize: we have

VC = [
⊕

λ real

(
d(λ)
⊕

j=1

C · f (λ)
j ) ]⊕ [

⊕

µ6=µ nonreal

(
d(µ)
⊕

j=1

V
(µ)
j ) ]

= [
⊕

λ real

(Eλ(T ))
C
]⊕ [

⊕

µ6=µ nonreal

(
d(µ)
⊕

j=1

((V (µ)
j )

R
)

C
]

where
V

(µ)
j = Cf

(µ)
j ⊕ C·J(f

(µ)
j ) = C(x

(µ)
j + i0)⊕ C(y

(µ)
j + i0) ,

and all the spaces Cf
(λ)
j , V

(µ)
j are of real type. Restricting attention to the real points

in VC we arrive at a direct sum decomposition of the original real vector space V into
T -invariant R-subspaces

(30) V = [
⊕

λ real

Eλ(T ) ]⊕ [
⊕

µ6=µ nonreal

(
d(µ)
⊕

j=1

(V (µ)
j )

R
) ]

We have arrived at the following decomposition of the R-linear operator T : V → V ,
when TC is diagonalizable. Note: For each complex pair (µ, µ) in sp(TC), Eµ ⊕ Eµ̄ is of

real type and we claim that (Eµ ⊕Eµ) ∩ (V + i0) =
⊕d(µ)

j=1 (V µ
j )R. The sum on the right

is direct so dimR(
⊕

µ,µ · · · ) = 2d(µ). Since we also have

dimR (Eµ ⊕ Eµ)R
= dimC (Eµ ⊕ Eµ) = 2d(µ) ,

the spaces coincide.

1.20. Theorem (TC Diagonalizable). If T : V → V is R-linear and TC is diagonal-
izable with eigenvalues labeled µ1, µ̄1, · · · , λr+1, · · · , λs as in (28), there is an R-basis X

such that [T ]X has the block diagonal form





























R1 0

·
·

Rr

D1

·
·

0 Ds
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where

Rk =









rkR(θk) 0
·
·

0 rkR(θk)









for 1 ≤ k ≤ r, and

Dk =









λk 0
·
·

0 λk









for r + 1 ≤ k ≤ s.

Here, µk = rkeiθk are representatives for the non-real pairs (µ, µ) in sp(TC).

When TC is not diagonalizable, we apply the Jordan Canonical form for TC.

1.21. Lemma. If T : V → V is a linear operator on a vector space over R, let µ ∈ C

and Mµ = {w ∈ VC : (TC − µI)kw = 0 for some k ∈ N}. Then w ∈ Mµ ⇔ J(w) ∈ Mµ,
so that

J(Mµ) = Mµ and J(Mµ) = Mµ

Proof: The map Φ : S 7→ JSJ = JSJ−1 is an automorphism of the algebra of all
C-linear maps HomC(VC, VC): it preserves products, Φ(S1S2) = Φ(S1)Φ(S2) because
J2 = I ⇒ JS1S2J = (JS1J)(JS2J), and obviously Φ(S1 + S2) = Φ(S1) + Φ(S2),
Φ(cS) = cΦ(S) for c ∈ C. In particular, Φ(Sk) = Φ(S)k for k ∈ N. Then

J((TC − µI)k)J = (J(TC − µI)J)k = (JTCJ − J(µI)J)
k

= (TC − µI)k

(JTC = TCJ because TC is of real-type by definition), and

J(µI)J(w) = J(µ · J(w)) = µ̄J2(w) = µ̄w, for w ∈ VC

Finally, we have (TC − µI)kw = 0 if and only if

J(TC − µI)kw = 0 ⇔ J(TC − µI)J(J(w)) = 0

⇔ (TC − µ)kJ(w) = 0 ⇔ J(w) ∈Mµ .

Hence J(Mµ) = Mµ, which implies Mµ = J(Mµ) since J2 = I. �

1.22. Theorem (TC not Diagonalizable). Let T : V → V lie a linear operator on
a finite dimensional vector space over R and let µ1, µ1, · · · , µr, µr, λr+1, · · · , λs be the
eigenvalues of TC : VC → VC, listed as in (28). Then there is an R-basis for V that puts
[T ]X in block diagonal form:

[T ]X =











A1 0

·
·

0 Am











,

in which each block Aj has one of two possible block upper-triangular forms:

A =















λ 1 0

· . . .

· 1

0 λ















for real eigenvalues λ of TC ,
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or

A =













Rµ,µ I2 0

· . . .

· I2

0 Rµ,µ













for conjugate pairs µ = eiθ, µ = e−iθ

where I2 is the 2× 2 identity matrix and

Rµ,µ = r

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

.

Proof: The proof will of course employ the generalized eigenspace decomposition VC =
⊕

z∈sp(TC) Mz(TC). As above, we write Mµ,µ = Mµ⊕Mµ for each distinct pair of nonreal
eigenvalues. The summands Mλ, Mµ,µ are of real type and are TC invariant, so for each
µ we may write Mµ,µ as the complexification of its space of real points

(31) Wµ = Mµ,µ ∩ (V + i0) .

Here Mµ,µ = Wµ + iWµ is TC-invariant. Since TC is of real type (by definition), it leaves
invariant the R-subspace V +i0; therefore the space of real points Wµ is also TC invariant,
with TC|(Wµ+i0) = T |Wµ

. It follows that TC|Mµ,µ
is the complexification

(T |Wµ
) + i(T |Wµ

)

of TWµ
. If we can find an R-basis in the space (31) of real points Wµ ⊆ Mµ,µ for which

T |Wµ
takes the form described in the theorem, then our proof is complete. For this we

may obviously restrict attention to a single subspace Mµ,µ in VC.

Case 1: A Real Eigenvalue λ. If λ is real then

(TC − λ)k(x + iy) = (TC − λ)k−1[(T − λ)x + i(T − λ)y ] = · · ·
= (T − λ)kx + i(T − λ)ky for k ∈ N .

Thus, x + iy ∈ Mλ(TC) if and only if x, y ∈ Mλ(T ), and the subspace of real points in
Mλ(TC) = Mλ(T ) + iMλ(T ) is precisely Mλ(T ) + i0. There is a C-basis X = {fj} of
real vectors in Mλ(TC) that yields the same matrix for TC and for its restriction to this
subspace of real points, and we have

TC|Wλ
= T |Wλ

= T |Mλ(T ) . and (TC)|Mλ(T ) = T |Mλ(T ) .

Case 2: A Conjugate Pair µ, µ. The space Mµ,µ = Mµ(TC) ⊕ Mµ(TC) is of real
type because J(Mµ) = Mµ. In fact, if v ∈ Mµ then (TC − µ)kv = 0 for some k. But
TCJ = JTC, so

(TC − µ)kJ(v) = (TC − µ)k−1J(TC − µ)(v) = · · · = J(TC − µ)k(v) = 0 .

Thus Mµ,µ is the complexification of its subspace of real points Vµ = Mµ,µ(TC)∩(V +i0).
By the Cyclic Subspace Decomposiiton (Theorem 3.2) a generalized eigenspace Mµ

for TC is a direct sum of TC-invariant spaces Cj that are cyclic under the action of the

nilpotent operator (TC − µI). In each Cj take a basis Xj = {f (j)
1 , · · · , f (j)

dj
} that puts

(TC − µI)|Cj
into elementary nilpotent form








0 1 · 0
· · ·
· 1

0 0









so that [TC] =









µ 1 · 0
· · ·
· 1

0 µ
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For the basis Xj we have

(TC − µI)f1 = 0 and (TC − µI)fj = fj−1 for j > 1,

which implies that TC(f1) = µf1 and TC(fj) = µfj + fj−1 for j > 1.

If fj = xj + iyj ∈ Wµ + iWµ, we have f̄j = J(fj) = xj − iyj and TC(fj) = µfj + fj−1,
hence

TC(f̄j) = TC(J(fj)) = J(TC(fj)) = J(µfj + fj−1) = µJ(fj) + J(fj−1) .

Since real and imaginary parts must agree we get TC(f̄j) = µf̄j + f̄j−1, as claimed.
Writing µ = a + ib with b 6= 0 (or in polar form, µ = reiθ with θ /∈ πZ), we get

T (xj) + iT (yj) = TC(xj + iyj) = TC(fj) = µfj + fj−1

= (a + ib)(xj + iyj) + (xj−1 + iyj−1)

= (axj − byj) + i(bxj + ayj) + (xj−1 + iyj−1)

Since µ = reiθ and µ = re−iθ this means

T (xj) = axj − byj + xj−1 = xj · r cos(θ) − yj · r sin(θ) + xj−1

T (yj) = bxj + ayj + yj−1 = xj · r sin(θ) + yj · r cos(θ) + yj−1

with respect to the R-basis

{x(1)
1 , y

(1)
1 , · · · , x(1)

d1
, y

(1)
d1

, x
(2)
1 ; y

(2)
1 , · · · }

in Vµ = Mµ,µ ∩ (V + i0) =
⊕d

j=1 V
(µ)
J . Thus the matrix [T ]X consists of diagonal blocks

of size 2dj × 2dj that have the form











R I2 · 0
R I2

. . . I2

0 R











=











rR(θ) I2 · 0
rR(θ) I2

. . . I2

0 rR(θ)











in which I2 is the 2× 2 identity matrix and

R = r · R(θ) =

(

a −b
b a

)

=

(

r cos(θ) −r sin(θ)
r sin(θ) r cos(θ)

)

if µ = a + ib = reiθ . �
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